依存理论

发布于 2024-10-22 23:43:17 字数 421 浏览 6 评论 0原文

有谁知道有一个好的网站、书籍或任何其他资源可以很好地解释依赖理论吗?我陷入了与下面所示类似的问题:

鉴于

R   < A = {P,Q,R,S,T,U,Y },


gamma = {Y->S   …(1)
       Q->ST….(2)  

U-> Y……(3)
       S->R  …...(4)

RS->T…….(5) }>.  

RTP U->T 成立

答案是:

U -> Y -> S -> RS -> T
aug (4) by S  S->R

Does anyone know of a good website, book or any other resources that would explain dependency theory well? I am stuck on a similar question to the one shown below:

Given

R   < A = {P,Q,R,S,T,U,Y },


gamma = {Y->S   …(1)
       Q->ST….(2)  

U-> Y……(3)
       S->R  …...(4)

RS->T…….(5) }>.  

RTP U->T  holds

Answer is:

U -> Y -> S -> RS -> T
aug (4) by S  S->R

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

一页 2024-10-29 23:43:17

我认为您需要搜索功能依赖而不是依赖理论。维基百科有一篇关于函数依赖的介绍性文章。表达式“Y->S”表示

  • Y 决定 S,或者
  • 如果您知道“Y”的一个值,则您可以
    知道“S”的一个值(而不是
    两个或三个或七个“S”值),或者
  • 如果两个元组具有相同的“Y”值,它们也将具有相同的“S”值

我不熟悉您发布的所有符号。但我认为你会被要求从一个关系R和一组编号为1到4的函数依赖gamma开始,以供参考。

Relation R = {P,Q,R,S,T,U,Y }

FD gamma = {Y->S   (1)
            Q->ST  (2)  
            U-> Y  (3)
            S->R   (4) }

这似乎是几个问题的“设置”。然后你会被要求承担这个额外的功能依赖性。

RS->T  (5)

根据设置和附加 FD,您应该证明函数依赖性 U->T 成立。讲师的答案是“U -> Y -> S -> RS -> T”,我认为这是讲师希望你遵循的推论链。首先给你 U->Y 和 Y->S,所以具体的推理链是这样的。

  1. U->YY->S,因此 U->S。 (传递性,讲师的 U->Y->S)

  2. S->R,因此 S->RS。 (增强,中间步骤)

  3. U->SS->RS,因此 U->RS。 (传递性,讲师的 U->Y->S->RS)

  4. U->RSRS->T,因此 U->T。 (传递性,讲师的 U->Y->S->RS->T)

I think you'll need to search for functional dependency instead of dependency theory. Wikipedia has an introductory article on functional dependency. The expression "Y->S" means

  • Y determines S, or
  • if you know one value for 'Y', you
    know one value for 'S' (instead of
    two or three or seven values for 'S'), or
  • if two tuples have the same value for 'Y', they'll also have the same value for 'S'

I'm not familiar with all the notation you posted. But I think you're asked to begin with a relation R and a set of functional dependencies gamma numbered 1 to 4 for reference.

Relation R = {P,Q,R,S,T,U,Y }

FD gamma = {Y->S   (1)
            Q->ST  (2)  
            U-> Y  (3)
            S->R   (4) }

This appears to be the "setup" for several problems. You're then asked to assume this additional functional dependency.

RS->T  (5)

Based on the setup and on that additional FD, you're supposed to prove that the functional dependency U->T holds. The lecturer's answer is "U -> Y -> S -> RS -> T", which I think is the chain of inferences the lecturer wants you to follow. You're given U->Y and Y->S to start with, so here's how that specific chain of inference goes.

  1. U->Y and Y->S, therefore U->S. (transitivity, Lecturer's U->Y->S)

  2. S->R, therefore S->RS. (augmentation, an intermediate step)

  3. U->S and S->RS, therefore U->RS. (transitivity, Lecturer's U->Y->S->RS)

  4. U->RS and RS->T, therefore U->T. (transitivity, Lecturer's U->Y->S->RS->T)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文