Mathematica 中的 3D 几何图
在平面几何绘图问题中,我问如何绘制平面几何结构。现在我想把它扩展到3D。不仅那些几何包做得不好,我在 Mathematica 中也面临不少障碍。
- 据我所知,
Locator
在 3d 中不可用。 Manipulate
似乎也不适用于 3d。
让我举一个具体的例子。我有一个高度 h
和孔径 2 theta
的直圆锥。它的圆形底座位于水平面上。给定一个圆锥体单元,在该圆锥体经过该圆锥体单元的切平面上画一个直径为 d 的圆。然后画出这个圆的水平直径。感谢您的帮助。
In planar geometry plot question, I asked how to draw planar geometric constructs. Now I want to extend it to 3D. Not only those geometry packages are not doing well, I am also facing quite a few obstacles in Mathematica.
Locator
is not usable in 3d, as far as i know.Manipulate
does not seem to work in 3d too.
Let me give a concrete example. I have a right circular cone with a height h
and an aperture 2 theta
. Its circular base is on the horizontal plane. Given a cone element, draw a circle with a diameter d
in the tangent plane to this cone passing the cone element. Then draw the horizontal diameter of this circle. Thank you for your help.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这其实并不难。首先,我们定义一个 3D 圆,由其中心位置和跨越其所在平面的两个向量给出:
然后给定圆锥体上的一个点
{x,y,z}
,其尖端为{0,0,h}
切线为{x,y,zh}
和{-y,x,0}
。剩下的只是绘图:This is really not that hard. First we define a 3D circle, given by a position of its center, and two vectors which span the plane it is in:
Then given a point
{x,y,z}
on a cone with tip at{0,0,h}
tangents are{x,y,z-h}
and{-y,x,0}
. The rest is just drawing: