在Java中生成具有最大值、最小值和平均值的随机数

发布于 2024-10-22 02:25:11 字数 143 浏览 8 评论 0原文

我需要生成具有以下属性的随机数。

最小值应为 200

最大值应为 20000

平均值为 500。

可选:第 75 个百分位数为 5000

绝对不是均匀分布,也不是高斯分布。我需要给予一些左偏。

I need to generate random numbers with following properties.

Min should be 200

Max should be 20000

Average(mean) is 500.

Optional: 75th percentile to be 5000

Definitely it is not uniform distribution, nor gaussian. I need to give some left skewness.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

鹤仙姿 2024-10-29 02:25:11

Java Random 可能不起作用,因为它只提供正态(高斯)分布。

您可能正在寻找的是 f 分布(见下文)。您可以在此处使用distlib库并选择f 分布。您可以使用随机 方法来获取随机数。

在此处输入图像描述

Java Random probably won't work because it only gives you normal(gaussian) distributions.

What you're probably looking for is an f distribution (see below). You can probably use the distlib library here and choose the f distribution. You can use the random method to get your random number.

enter image description here

够钟 2024-10-29 02:25:11

假设 X 是您的目标变量,让我们通过执行 Y=(X-200)/(20000-200) 来标准化范围。所以现在你需要一些 Y 随机变量,它的值在 [0,1] 中,平均值为 (500-200)/(20000-200)=1/ 66。

你有很多选择,在我看来,最自然的一个是 Beta 发行版Y ~ Beta(a,b)a/(a+b) = 1/66 - 您有额外的自由度,您可以选择满足最后四分位要求。

之后,您只需将 X 返回为 Y*(20000-200)+200

要生成 Beta 随机变量,您可以使用 Apache Commons 或参见 此处

Say X is your target variable, lets normalize the range by doing Y=(X-200)/(20000-200). So now you want some Y random variable that takes values in [0,1] with mean (500-200)/(20000-200)=1/66.

You have many options, the most natural one seems to me a Beta distribution, Y ~ Beta(a,b) with a/(a+b) = 1/66 - you have an extra degree of freedom, which you can choose either to fit the last quartile requirement.

After that, you simply return X as Y*(20000-200)+200

To generate a Beta random variable, you can use Apache Commons or see here.

下雨或天晴 2024-10-29 02:25:11

这可能不是您正在寻找的答案,但具有 3 个均匀分布的具体情况:

Uniform distributions
(忽略左边的数字,但它是按比例缩放的!)

public int generate() {
  if(random(0, 65) == 0) {
    // 50-100 percentile

    if(random(1, 13) > 3) {
      // 50-75 percentile
      return random(500, 5000);
    } else {
      // 75-100 percentile
      return random(5000, 20000);
    }

  } else {
    // 0-50 percentile
    return random(200, 500);
  }
}

我如何得到这些数字

首先,曲线下的面积在 200-500 和 500-20000 之间相等。这意味着高度关系是 300 * leftHeight == 19500 * rightHeight 使得 leftHeight == 65 * rightHeight

这给了我们 1/66 的机会选择右边,并且65/66 的机会选择左边。

然后,我对第 75 个百分位数进行了相同的计算,只不过比率为 500-5000 机会 == 5000-20000 机会 * 10 / 3。同样,这意味着我们有 10/13 的机会处于 50-75 百分位数,有 3/13 的机会处于 75-100 百分位数。

感谢@Stas - 我正在使用他的“包容性随机”功能。

是的,我意识到我的数字是错误的,因为这种方法适用于离散数字,而我的计算是连续的。如果有人能纠正我的边境案件,那就太好了。

This may not be the answer you're looking for, but the specific case with 3 uniform distributions:

Uniform distributions
(Ignore the numbers on the left, but it is to scale!)

public int generate() {
  if(random(0, 65) == 0) {
    // 50-100 percentile

    if(random(1, 13) > 3) {
      // 50-75 percentile
      return random(500, 5000);
    } else {
      // 75-100 percentile
      return random(5000, 20000);
    }

  } else {
    // 0-50 percentile
    return random(200, 500);
  }
}

How I got the numbers

First, the area under the curve is equal between 200-500 and 500-20000. This means that the height relationship is 300 * leftHeight == 19500 * rightHeight making leftHeight == 65 * rightHeight

This gives us a 1/66 chance to choose right, and a 65/66 chance to choose left.

I then made the same calculation for the 75th percentile, except the ratio was 500-5000 chance == 5000-20000 chance * 10 / 3. Again, this means we have a 10/13 chance to be in 50-75 percentile, and a 3/13 chance to be in 75-100.

Kudos to @Stas - I am using his 'inclusive random' function.

And yes, I realise my numbers are wrong as this method works with discrete numbers, and my calculations were continuous. It would be good if someone could correct my border cases.

忆伤 2024-10-29 02:25:11

你可以有一个函数 f 在 [0;1] 上工作,比如

Integral(f(x)dx) on [0;1] = 500
f(0) = 200
f(0.75) = 5000
f(1) = 20000

我猜这种形式的函数

f(x) = a*exp(x) + b*x + c

可能是一个解决方案,你只需要解决相关的系统。

然后,您执行 f(uniform_random(0,1)) 就可以了!

You can have a function f working on [0;1] such as

Integral(f(x)dx) on [0;1] = 500
f(0) = 200
f(0.75) = 5000
f(1) = 20000

I guess a function of the form

f(x) = a*exp(x) + b*x + c

could be a solution, you just have to solve the related system.

Then, you do f(uniform_random(0,1)) and there you are !

§对你不离不弃 2024-10-29 02:25:11

您的问题很模糊,因为存在许多具有给定最小值、最大值和平均值的随机分布。

事实上,众多解决方案中的一种是选择概率为 (mean-min)/(max-min)max,否则选择 min。也就是说,该解决方案仅生成两个数字之一——最小值和最大值。

下面是另一种解决方案。

PERT 分布(或beta-PERT 分布< /em>) 被设计为采取最小值、最大值和估计模式。它是三角分布的“平滑”版本,从该分布生成随机变量可以按如下方式实现:

startpt + (endpt - startpt) * 
     BetaDist(1.0 + (midpt - startpt) * shape / (endpt - startpt), 
          1.0 + (endpt - midpt) * shape / (endpt - startpt))

其中 -

  • startpt 是最小值,
  • midpt 是众数(不一定是平均值或均值),
  • endpt 是最大值,
  • shape 是 0 或更大的数字,但通常为 4,而
  • BetaDist(X, Y ) 返回带有参数 XY 的 beta 分布的随机变量。

给定已知平均值 (mean),midpt 可以通过以下方式计算:

3 * mean / 2 - (startpt + endpt) / 4

Your question is vague as there are numerous random distributions with a given minimum, maximum, and mean.

Indeed, one solution among many is to choose max with probability (mean-min)/(max-min) and min otherwise. That is, this solution generates one of only two numbers — the minimum and the maximum.

The following is another solution.

The PERT distribution (or beta-PERT distribution) is designed to take a minimum and maximum and estimated mode. It's a "smoothed-out" version of the triangular distribution, and generating a random variate from that distribution can be implemented as follows:

startpt + (endpt - startpt) * 
     BetaDist(1.0 + (midpt - startpt) * shape / (endpt - startpt), 
          1.0 + (endpt - midpt) * shape / (endpt - startpt))

where—

  • startpt is the minimum,
  • midpt is the mode (not necessarily average or mean),
  • endpt is the maximum,
  • shape is a number 0 or greater, but usually 4, and
  • BetaDist(X, Y) returns a random variate from the beta distribution with parameters X and Y.

Given a known mean (mean), midpt can be calculated by:

3 * mean / 2 - (startpt + endpt) / 4
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文