如何重写递归函数以使用循环?

发布于 2024-10-22 01:37:17 字数 752 浏览 1 评论 0原文

这个堆栈溢出线程声称每个递归函数都可以写成循环。

哪些递归函数不能使用循环重写?

感觉。但我不确定如何将以下递归函数表示为循环,因为它具有预递归逻辑和后递归逻辑。

显然解决方案不能使用goto语句。代码在这里:

def gen_perms(lst, k, m):

    if k == m:
        all_perms.append(list(lst))
    else:
        for i in xrange(k, m+1):

            #swap char
            tmp = lst[k]
            lst[k] = lst[i]
            lst[i] = tmp

            gen_perms(lst, k+1, m)

            #swap char
            tmp = lst[k]
            lst[k] = lst[i]
            lst[i] = tmp

调用它会像这样:

all_perms = []
gen_perm([1, 2, 3], 0, 2)

它会生成列表 1,2,3 的每个排列。

This stack overflow thread claims that every recursive function can be written as a loop.

Which recursive functions cannot be rewritten using loops?

It makes complete sense. But I'm not sure how to express the following recursive function as a loop because it has a pre recursive piece of logic and a post recursive piece of logic.

Obviously the solution cannot use the goto statement. The code is here:

def gen_perms(lst, k, m):

    if k == m:
        all_perms.append(list(lst))
    else:
        for i in xrange(k, m+1):

            #swap char
            tmp = lst[k]
            lst[k] = lst[i]
            lst[i] = tmp

            gen_perms(lst, k+1, m)

            #swap char
            tmp = lst[k]
            lst[k] = lst[i]
            lst[i] = tmp

Invoking it would be like this:

all_perms = []
gen_perm([1, 2, 3], 0, 2)

and it generates every permutation of the list 1,2,3.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

み格子的夏天 2024-10-29 01:37:17

进行排列的最 Pythonic 方法是使用:

>>> from itertools import permutations
>>> permutations([1,2,3])
>>> list(permutations([1,2,3]))
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]

The most pythonic way of doing permutations is to use:

>>> from itertools import permutations
>>> permutations([1,2,3])
>>> list(permutations([1,2,3]))
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]
烟雨凡馨 2024-10-29 01:37:17

假设您想要找到 [1, 2, 3, 4] 的所有排列。其中有 24 个(=4!),因此将它们编号为 0-23。我们想要的是一种非递归的方法来找到第 N 个排列。

假设我们按数字升序对排列进行排序。那么:

  • 排列 0-5 从 1 开始
  • 排列 6-11 从 2 开始
  • 排列 12-17 从 3 开始
  • 排列 18-23 从 4 开始

因此,我们可以通过将 N 除以 6(=3!) 得到第一个排列数 N。 ,并向上舍入。

我们如何得到下一个数字?看看排列 0-5 中的第二个数字:

  • 排列 0-1 有第二个数字 2。
  • 排列 2-3 有第二个数字 3。
  • 排列 4-5 有第二个数字 4。

我们在排列 6-11 中看到类似的情况:

  • 排列6-7 的第二个数字为 1。
  • 排列 8-9 的第二个数字为 3。
  • 排列 10-11 的第二个数字为 4。

一般来说,先除以 6 后取余数,再除以 2(=2!),然后舍入向上。这将为您提供 1、2 或 3,第二个项目是列表中剩余的第 1 个、第 2 个或第 3 个项目(在您取出第一个项目之后)。

你可以继续这样下去。这是执行此操作的一些代码:

from math import factorial

def gen_perms(lst):
    all_perms = []

    # Find the number of permutations.
    num_perms = factorial(len(lst))

    for i in range(num_perms):
        # Generate the ith permutation.
        perm = []
        remainder = i

        # Clone the list so we can remove items from it as we
        # add them to our permutation.
        items = lst[:]

        # Pick out each item in turn.
        for j in range(len(lst) - 1):
            # Divide the remainder at the previous step by the
            # next factorial down, to get the item number.
            divisor = factorial(len(lst) - j - 1)
            item_num = remainder / divisor

            # Add the item to the permutation, and remove it
            # from the list of available items.
            perm.append(items[item_num])
            items.remove(items[item_num])

            # Take the remainder for the next step.
            remainder = remainder % divisor

        # Only one item left - add it to the permutation.
        perm.append(items[0])

        # Add the permutation to the list.
        all_perms.append(perm)

    return all_perms

Let's say you want to find all permutations of [1, 2, 3, 4]. There are 24 (=4!) of these, so number them 0-23. What we want is a non-recursive way to find the Nth permutation.

Let's say we sort the permutations in increasing numerical order. Then:

  • Permutations 0-5 start with 1
  • Permutations 6-11 start with 2
  • Permutations 12-17 start with 3
  • Permutations 18-23 start with 4

So we can get the first number of permutation N by dividing N by 6 (=3!), and rounding up.

How do we get the next number? Look at the second numbers in permutations 0-5:

  • Permutations 0-1 have second number 2.
  • Permutations 2-3 have second number 3.
  • Permutations 4-5 have second number 4.

We see a similar thing with permutations 6-11:

  • Permutations 6-7 have second number 1.
  • Permutations 8-9 have second number 3.
  • Permutations 10-11 have second number 4.

In general, take the remainder after dividing by 6 earlier, divide that by 2 (=2!), and round up. That gives you 1, 2, or 3, and the second item is the 1st, 2nd or 3rd item left in the list (after you've taken out the first item).

You can keep going in this way. Here's some code that does this:

from math import factorial

def gen_perms(lst):
    all_perms = []

    # Find the number of permutations.
    num_perms = factorial(len(lst))

    for i in range(num_perms):
        # Generate the ith permutation.
        perm = []
        remainder = i

        # Clone the list so we can remove items from it as we
        # add them to our permutation.
        items = lst[:]

        # Pick out each item in turn.
        for j in range(len(lst) - 1):
            # Divide the remainder at the previous step by the
            # next factorial down, to get the item number.
            divisor = factorial(len(lst) - j - 1)
            item_num = remainder / divisor

            # Add the item to the permutation, and remove it
            # from the list of available items.
            perm.append(items[item_num])
            items.remove(items[item_num])

            # Take the remainder for the next step.
            remainder = remainder % divisor

        # Only one item left - add it to the permutation.
        perm.append(items[0])

        # Add the permutation to the list.
        all_perms.append(perm)

    return all_perms
杀お生予夺 2024-10-29 01:37:17

我不太熟悉 python 语法,但假设 python 可以嵌套 for 语句,那么下面的代码(在“c”中)应该不会太难翻译。

int list[3]={1,2,3};
int i,j,k;

for(i=0;i < SIZE;i++)
for(j=0;j < SIZE;j++)
for(k=0;k < SIZE;k++)
if(i!=j && j!=k && i!=k)
printf("%d%d%d\n",list[i],list[j],list[k]);

I am not too familiar with the python syntax, but the following code (in 'c') shouldn't be too hard to translate assuming python can do nested for statements.

int list[3]={1,2,3};
int i,j,k;

for(i=0;i < SIZE;i++)
for(j=0;j < SIZE;j++)
for(k=0;k < SIZE;k++)
if(i!=j && j!=k && i!=k)
printf("%d%d%d\n",list[i],list[j],list[k]);
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文