从 MySQL 中的分层数据生成基于深度的树(无 CTE)

发布于 2024-10-22 00:45:32 字数 730 浏览 7 评论 0原文

嗨,很多天我一直在 MySQL 中解决这个问题,但是我无法弄清楚。你们有什么建议吗?

基本上,我有一个类别表,其中包含以下域:idname(类别名称)和parent(类别父级的 ID) )。

示例数据:

1  Fruit        0
2  Apple        1
3  pear         1
4  FujiApple    2
5  AusApple     2
6  SydneyAPPLE  5
....

有很多级别,可能超过 3 个级别。我想创建一个 sql 查询,根据层次结构对数据进行分组:parent >孩子>孙子>等等。

它应该输出树结构,如下所示:

1 Fruit 0
 ^ 2 Apple 1
   ^ 4 FujiApple 2
   - 5 AusApple 2
     ^ 6 SydneyApple 5
 - 3 pear 1

Can I do this using a single SQL query?我尝试过并且确实有效的替代方案如下:

SELECT * FROM category WHERE parent=0

在此之后,我再次循环数据,并选择parent = id的行。这似乎是一个糟糕的解决方案。因为是mySQL,所以不能使用CTE。

Hi For many days I have been working on this problem in MySQL, however I can not figure it out. Do any of you have suggestions?

Basically, I have a category table with domains like: id, name (name of category), and parent (id of parent of the category).

Example Data:

1  Fruit        0
2  Apple        1
3  pear         1
4  FujiApple    2
5  AusApple     2
6  SydneyAPPLE  5
....

There are many levels, possibly more than 3 levels. I want to create an sql query that groups the datas according to he hierarchy: parent > child > grandchild > etc.

It should output the tree structure, as follows:

1 Fruit 0
 ^ 2 Apple 1
   ^ 4 FujiApple 2
   - 5 AusApple 2
     ^ 6 SydneyApple 5
 - 3 pear 1

Can I do this using a single SQL query? The alternative, which I tried and does work, is the following:

SELECT * FROM category WHERE parent=0

After this, I loop through the data again, and select the rows where parent=id. This seems like a bad solution. Because it is mySQL, CTEs cannot be used.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

小苏打饼 2024-10-29 00:45:32

如果您使用存储过程,您可以在从 php 到 mysql 的单个调用中完成此操作:

调用示例

mysql> call category_hier(1);

+--------+---------------+---------------+----------------------+-------+
| cat_id | category_name | parent_cat_id | parent_category_name | depth |
+--------+---------------+---------------+----------------------+-------+
|      1 | Location      |          NULL | NULL                 |     0 |
|      3 | USA           |             1 | Location             |     1 |
|      4 | Illinois      |             3 | USA                  |     2 |
|      5 | Chicago       |             3 | USA                  |     2 |
+--------+---------------+---------------+----------------------+-------+
4 rows in set (0.00 sec)


$sql = sprintf("call category_hier(%d)", $id);

希望这有帮助:)

完整脚本

测试表结构:

drop table if exists categories;
create table categories
(
cat_id smallint unsigned not null auto_increment primary key,
name varchar(255) not null,
parent_cat_id smallint unsigned null,
key (parent_cat_id)
)
engine = innodb;

测试数据:

insert into categories (name, parent_cat_id) values
('Location',null),
   ('USA',1), 
      ('Illinois',2), 
      ('Chicago',2),  
('Color',null), 
   ('Black',3), 
   ('Red',3);

过程:

drop procedure if exists category_hier;

delimiter #

create procedure category_hier
(
in p_cat_id smallint unsigned
)
begin

declare v_done tinyint unsigned default 0;
declare v_depth smallint unsigned default 0;

create temporary table hier(
 parent_cat_id smallint unsigned, 
 cat_id smallint unsigned, 
 depth smallint unsigned default 0
)engine = memory;

insert into hier select parent_cat_id, cat_id, v_depth from categories where cat_id = p_cat_id;

/* http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html */

create temporary table tmp engine=memory select * from hier;

while not v_done do

    if exists( select 1 from categories p inner join hier on p.parent_cat_id = hier.cat_id and hier.depth = v_depth) then

        insert into hier 
            select p.parent_cat_id, p.cat_id, v_depth + 1 from categories p 
            inner join tmp on p.parent_cat_id = tmp.cat_id and tmp.depth = v_depth;

        set v_depth = v_depth + 1;          

        truncate table tmp;
        insert into tmp select * from hier where depth = v_depth;

    else
        set v_done = 1;
    end if;

end while;

select 
 p.cat_id,
 p.name as category_name,
 b.cat_id as parent_cat_id,
 b.name as parent_category_name,
 hier.depth
from 
 hier
inner join categories p on hier.cat_id = p.cat_id
left outer join categories b on hier.parent_cat_id = b.cat_id
order by
 hier.depth, hier.cat_id;

drop temporary table if exists hier;
drop temporary table if exists tmp;

end #

测试运行:

delimiter ;

call category_hier(1);

call category_hier(2);

使用 Yahoo geoplanet 放置数据的一些性能

drop table if exists geoplanet_places;
create table geoplanet_places
(
woe_id int unsigned not null,
iso_code  varchar(3) not null,
name varchar(255) not null,
lang varchar(8) not null,
place_type varchar(32) not null,
parent_woe_id int unsigned not null,
primary key (woe_id),
key (parent_woe_id)
)
engine=innodb;

mysql> select count(*) from geoplanet_places;
+----------+
| count(*) |
+----------+
|  5653967 |
+----------+

测试表中有 560 万行(位置),让我们看看从 php 调用的邻接列表实现/存储过程如何处理它。

     1 records fetched with max depth 0 in 0.001921 secs
   250 records fetched with max depth 1 in 0.004883 secs
   515 records fetched with max depth 1 in 0.006552 secs
   822 records fetched with max depth 1 in 0.009568 secs
   918 records fetched with max depth 1 in 0.009689 secs
  1346 records fetched with max depth 1 in 0.040453 secs
  5901 records fetched with max depth 2 in 0.219246 secs
  6817 records fetched with max depth 1 in 0.152841 secs
  8621 records fetched with max depth 3 in 0.096665 secs
 18098 records fetched with max depth 3 in 0.580223 secs
238007 records fetched with max depth 4 in 2.003213 secs

总的来说,我对这些冷运行时非常满意,因为我什至不会开始考虑将数万行数据返回到我的前端,而是宁愿动态构建树,每次调用仅获取几个级别。哦,以防万一您认为 innodb 比 myisam 慢 - 我测试的 myisam 实现在所有方面都慢两倍。

更多内容在这里:http://pastie.org/1672733

希望这有帮助:)

You can do it in a single call from php to mysql if you use a stored procedure:

Example calls

mysql> call category_hier(1);

+--------+---------------+---------------+----------------------+-------+
| cat_id | category_name | parent_cat_id | parent_category_name | depth |
+--------+---------------+---------------+----------------------+-------+
|      1 | Location      |          NULL | NULL                 |     0 |
|      3 | USA           |             1 | Location             |     1 |
|      4 | Illinois      |             3 | USA                  |     2 |
|      5 | Chicago       |             3 | USA                  |     2 |
+--------+---------------+---------------+----------------------+-------+
4 rows in set (0.00 sec)


$sql = sprintf("call category_hier(%d)", $id);

Hope this helps :)

Full script

Test table structure:

drop table if exists categories;
create table categories
(
cat_id smallint unsigned not null auto_increment primary key,
name varchar(255) not null,
parent_cat_id smallint unsigned null,
key (parent_cat_id)
)
engine = innodb;

Test data:

insert into categories (name, parent_cat_id) values
('Location',null),
   ('USA',1), 
      ('Illinois',2), 
      ('Chicago',2),  
('Color',null), 
   ('Black',3), 
   ('Red',3);

Procedure:

drop procedure if exists category_hier;

delimiter #

create procedure category_hier
(
in p_cat_id smallint unsigned
)
begin

declare v_done tinyint unsigned default 0;
declare v_depth smallint unsigned default 0;

create temporary table hier(
 parent_cat_id smallint unsigned, 
 cat_id smallint unsigned, 
 depth smallint unsigned default 0
)engine = memory;

insert into hier select parent_cat_id, cat_id, v_depth from categories where cat_id = p_cat_id;

/* http://dev.mysql.com/doc/refman/5.0/en/temporary-table-problems.html */

create temporary table tmp engine=memory select * from hier;

while not v_done do

    if exists( select 1 from categories p inner join hier on p.parent_cat_id = hier.cat_id and hier.depth = v_depth) then

        insert into hier 
            select p.parent_cat_id, p.cat_id, v_depth + 1 from categories p 
            inner join tmp on p.parent_cat_id = tmp.cat_id and tmp.depth = v_depth;

        set v_depth = v_depth + 1;          

        truncate table tmp;
        insert into tmp select * from hier where depth = v_depth;

    else
        set v_done = 1;
    end if;

end while;

select 
 p.cat_id,
 p.name as category_name,
 b.cat_id as parent_cat_id,
 b.name as parent_category_name,
 hier.depth
from 
 hier
inner join categories p on hier.cat_id = p.cat_id
left outer join categories b on hier.parent_cat_id = b.cat_id
order by
 hier.depth, hier.cat_id;

drop temporary table if exists hier;
drop temporary table if exists tmp;

end #

Test runs:

delimiter ;

call category_hier(1);

call category_hier(2);

Some performance testing using Yahoo geoplanet places data

drop table if exists geoplanet_places;
create table geoplanet_places
(
woe_id int unsigned not null,
iso_code  varchar(3) not null,
name varchar(255) not null,
lang varchar(8) not null,
place_type varchar(32) not null,
parent_woe_id int unsigned not null,
primary key (woe_id),
key (parent_woe_id)
)
engine=innodb;

mysql> select count(*) from geoplanet_places;
+----------+
| count(*) |
+----------+
|  5653967 |
+----------+

so that's 5.6 million rows (places) in the table let's see how the adjacency list implementation/stored procedure called from php handles that.

     1 records fetched with max depth 0 in 0.001921 secs
   250 records fetched with max depth 1 in 0.004883 secs
   515 records fetched with max depth 1 in 0.006552 secs
   822 records fetched with max depth 1 in 0.009568 secs
   918 records fetched with max depth 1 in 0.009689 secs
  1346 records fetched with max depth 1 in 0.040453 secs
  5901 records fetched with max depth 2 in 0.219246 secs
  6817 records fetched with max depth 1 in 0.152841 secs
  8621 records fetched with max depth 3 in 0.096665 secs
 18098 records fetched with max depth 3 in 0.580223 secs
238007 records fetched with max depth 4 in 2.003213 secs

Overall i'm pretty pleased with those cold runtimes as I wouldn't even begin to consider returning tens of thousands of rows of data to my front end but would rather build the tree dynamically fetching only several levels per call. Oh and just incase you were thinking innodb is slower than myisam - the myisam implementation I tested was twice as slow in all counts.

More stuff here : http://pastie.org/1672733

Hope this helps :)

风吹雪碎 2024-10-29 00:45:32

There are two common ways of storing hierarchical data in an RDBMS: adjacency lists (which you are using) and nested sets. There is a very good write-up about these alternatives in Managing Hierarchical Data in MySQL. You can only do what you want in a single query with the nested set model. However, the nested set model makes it more work to update the hierarchical structure, so you need to consider the trade-offs depending on your operational requirements.

雨轻弹 2024-10-29 00:45:32

您无法使用单个查询来实现此目的。在这种情况下,您的分层数据模型是无效的。我建议您尝试其他两种在数据库中存储分层数据的方法:MPTT 模型或“lineage”模型。使用这些模型中的任何一个都可以让您一次性完成所需的选择。

这是一篇包含更多详细信息的文章: http://articles.sitepoint.com/article/hierarchical -数据数据库

You can't achieve this using a single query. Your hierarchical data model is ineffective in this case. I suggest you try two other ways of storing hierarchical data in a database: the MPTT model or the "lineage" model. Using either of those models allows you to do the select you want in a single go.

Here is an article with further details: http://articles.sitepoint.com/article/hierarchical-data-database

雨后彩虹 2024-10-29 00:45:32

线性方式:

我使用一个丑陋的函数在简单的字符串字段中创建一棵树。

/              topic title
/001           message 1
/002           message 2
/002/001       reply to message 2
/002/001/001/  reply to reply
/003           message 3
etc...

该表可用于通过简单的 SQL 查询来选择树顺序中的所有行:

select * from morum_messages where m_topic=1234 order by m_linear asc

INSERT 只是选择父线性(和子线性)并根据需要计算字符串。

select M_LINEAR FROM forum_messages WHERE m_topic = 1234 and M_LINEAR LIKE '{0}/___' ORDER BY M_LINEAR DESC limit 0,1  
/* {0} - m_linear of the parent message*/

DELETE 很简单,就是删除消息,或者线性删除父消息的所有回复。

The linear way:

I am using a ugly function to create a tree in a simple string field.

/              topic title
/001           message 1
/002           message 2
/002/001       reply to message 2
/002/001/001/  reply to reply
/003           message 3
etc...

the table can be used to select all the rows in the tree order with a simple SQL Query:

select * from morum_messages where m_topic=1234 order by m_linear asc

INSERT is just select the parent linear (and children) and calculate the string as needed.

select M_LINEAR FROM forum_messages WHERE m_topic = 1234 and M_LINEAR LIKE '{0}/___' ORDER BY M_LINEAR DESC limit 0,1  
/* {0} - m_linear of the parent message*/

DELETE is simple as delete the message, or delete by linear all replies of the parent one.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文