n 位整数的概率
我有一个问题,
关于一个随机 512 位整数 n,它不是 2,3 或 5 的倍数,它是什么n 是素数的机会是多少?如果 n 是合数但愚弄了费马素性测试呢?如果它是复合的但不能欺骗费马素性测试呢?
Possible Duplicate:
random a 512-bit integer N that is not a multiple of 2, 3, or 5
I have a question
for a random 512-bit integer n that isn't a multiple of 2,3, or 5 what is the chance that n is prime? what about that n is composite but fools the fermat primality test? what about that it is composite but doesn't fool the fermat primality test?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
由于这绝对是一个家庭作业问题,我将向您指出素数定理,它应该给出任何大数为素数的概率。
从那里,用有关已被消除的合数的新信息修改概率(提示:考虑问题空间如何缩小)。
祝你好运!
Since this is definitely a homework problem, I'll point you at the Prime Number Theorem, which should give you the probability that any large number is prime.
From there, modify the probability with your new information about composite numbers that have been eliminated (Hint: Think about how the problem space shrinks).
Best of luck!