从函数依赖性检查第三范式

发布于 2024-10-21 22:13:36 字数 476 浏览 9 评论 0原文

我有一个关于根据函数依赖关系确定关系是否处于第三范式的问题。

R = {A,B,C,D,E}
<代码>A - > B
<代码>BC - > E <代码>ED - > A

由此,我确定候选键为: {ACD},{BCD},{CDE}
维基百科表示,如果对于每个函数依赖 X->Y,关系至少满足以下要求之一,则该关系处于第三范式: 1. Y是X的子集 2. X 是超级键 Y 是某个键 K 的 K 子集

我的工作:A ->由于键 {BCD},B 满足 3,由于 {CDE}BC->E 满足 3,并且CD->由于{ACD},A 满足3。

这是解释这些规则的正确方式吗?

I have a question about determining whether a relation is in 3rd Normal Form based on functional dependencies.

R = {A,B,C,D,E}
A -> B
BC -> E
ED -> A

From this, I determined the candidate keys to be:
{ACD},{BCD},{CDE}
Wikipedia says that a relation is in 3rd Normal Form if, for each functional dependency X->Y, it meets at least one of the following requirements:
1. Y is a subset of X
2. X is a superkey
Y is a subset of K for some key K

My work: A -> B satisfies 3 because of the key {BCD}, BC->E satisfies 3 because of {CDE}, and CD -> A satisfies 3 because of {ACD}.

Is this the correct way of interpreting those rules?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

触ぅ动初心 2024-10-28 22:13:36

<代码>A - > B 表示函数依赖。但是这些

R1 = {A,B}
R2 = {B,C,E}
R3 = {E,D,A}

表示关系。 (我假设您的意思是我们将这些视为您分解 R 得到的关系。)

范式适用于关系;它们不适用于函数依赖。说“A -> B is in 3NF”或“A 决定 B is in 3NF”是没有任何意义的。

所以 R1 = {A,B} 是一个关系。它不“由于密钥 {B,C,D} 而满足规则 3”。不能,因为 {B,C,D} 不在 R1 中。

这些规则与分解 R 所产生的关系的候选键有关,而不是与 R 本身的候选键有关。

稍后。 。 .我发现我做出了错误的假设。您正在尝试评估 R,而不是分解它。在这种情况下,你的推理是正确的,R 属于 3NF。您还可以得出结论,R 属于 3NF,因为不存在非素数属性。由于不存在非素数属性,因此每个 FD 的右侧必须是候选键的一部分。

但R不在BCNF中。 (或者 4NF,或者 5NF。)你能解决这个问题吗?

A -> B expresses a functional dependency. But these

R1 = {A,B}
R2 = {B,C,E}
R3 = {E,D,A}

express relations. (I'm assuming you meant us to take these as the relations you got from decomposing R.)

Normal forms apply to relations; they don't apply to functional dependencies. It doesn't make any sense to say "A -> B is in 3NF", or "A determines B is in 3NF".

So R1 = {A,B} is a relation. It doesn't "satisfy rule 3 because of the key {B,C,D}". It can't, because {B,C,D} isn't in R1.

Those rules have to do with the candidate keys of the relations that result from decomposing R, not with the candidate keys of R itself.

Later . . . I see I made an incorrect assumption. You're trying to evaluate R, not decompose it. In that case your reasoning is correct, and R is in 3NF. You could also conclude that R is in 3NF because there are no non-prime attributes. Since there are no non-prime attributes, the right-hand side of every FD must be part of a candidate key.

But R is not in BCNF. (Or 4NF, or 5NF.) Can you fix that?

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文