如何实现广度优先遍历?

发布于 2024-10-21 20:51:24 字数 4220 浏览 4 评论 0原文

这就是我所拥有的。我以为预购是一样的,把它和深度优先混在一起了!

import java.util.LinkedList;
import java.util.Queue;

public class Exercise25_1 {
  public static void main(String[] args) {

    BinaryTree tree = new BinaryTree(new Integer[] {10, 5, 15, 12, 4, 8 });

    System.out.print("\nInorder: ");
    tree.inorder();
    System.out.print("\nPreorder: ");
    tree.preorder();
    System.out.print("\nPostorder: ");
    tree.postorder();

    //call the breadth method to test it

    System.out.print("\nBreadthFirst:");
    tree.breadth();

  }
}

class BinaryTree {
  private TreeNode root;


  /** Create a default binary tree */
  public BinaryTree() {
  }

  /** Create a binary tree from an array of objects */
  public BinaryTree(Object[] objects) {
    for (int i = 0; i < objects.length; i++) {
      insert(objects[i]);
    }
  }

  /** Search element o in this binary tree */
  public boolean search(Object o) {
    return search(o, root);
  }

  public boolean search(Object o, TreeNode root) {
    if (root == null) {
      return false;
    }
    if (root.element.equals(o)) {
      return true;
    }
    else {
      return search(o, root.left) || search(o, root.right);
    }
  }

  /** Return the number of nodes in this binary tree */
  public int size() {
    return size(root);
  }

  public int size(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + size(root.left) + size(root.right);
    }
  }

  /** Return the depth of this binary tree. Depth is the
  * number of the nodes in the longest path of the tree */
  public int depth() {
    return depth(root);
  }

  public int depth(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + Math.max(depth(root.left), depth(root.right));
    }
  }

  /** Insert element o into the binary tree
  * Return true if the element is inserted successfully */
  public boolean insert(Object o) {
    if (root == null) {
      root = new TreeNode(o); // Create a new root
    }
    else {
      // Locate the parent node
      TreeNode parent = null;
      TreeNode current = root;
      while (current != null) {
        if (((Comparable)o).compareTo(current.element) < 0) {
          parent = current;
          current = current.left;
        }
        else if (((Comparable)o).compareTo(current.element) > 0) {
          parent = current;
          current = current.right;
        }
        else {
          return false; // Duplicate node not inserted
        }
      }

      // Create the new node and attach it to the parent node
      if (((Comparable)o).compareTo(parent.element) < 0) {
        parent.left = new TreeNode(o);
      }
      else {
        parent.right = new TreeNode(o);
      }
    }

    return true; // Element inserted
  }

  public void breadth() {
  breadth(root);
  }

//  Implement this method to produce a breadth first

//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }


  /** Inorder traversal */
  public void inorder() {
    inorder(root);
  }

  /** Inorder traversal from a subtree */
  private void inorder(TreeNode root) {
    if (root == null) {
      return;
    }
    inorder(root.left);
    System.out.print(root.element + " ");
    inorder(root.right);
  }

  /** Postorder traversal */
  public void postorder() {
    postorder(root);
  }

  /** Postorder traversal from a subtree */
  private void postorder(TreeNode root) {
    if (root == null) {
      return;
    }
    postorder(root.left);
    postorder(root.right);
    System.out.print(root.element + " ");
  }

  /** Preorder traversal */
  public void preorder() {
    preorder(root);
  }

  /** Preorder traversal from a subtree */
  private void preorder(TreeNode root) {
    if (root == null) {
      return;
    }
    System.out.print(root.element + " ");
    preorder(root.left);
    preorder(root.right);

  }

  /** Inner class tree node */
  private class TreeNode {
    Object element;
    TreeNode left;
    TreeNode right;

    public TreeNode(Object o) {
      element = o;
    }
  }

}

This is what I have. I thought pre-order was the same and mixed it up with depth first!

import java.util.LinkedList;
import java.util.Queue;

public class Exercise25_1 {
  public static void main(String[] args) {

    BinaryTree tree = new BinaryTree(new Integer[] {10, 5, 15, 12, 4, 8 });

    System.out.print("\nInorder: ");
    tree.inorder();
    System.out.print("\nPreorder: ");
    tree.preorder();
    System.out.print("\nPostorder: ");
    tree.postorder();

    //call the breadth method to test it

    System.out.print("\nBreadthFirst:");
    tree.breadth();

  }
}

class BinaryTree {
  private TreeNode root;


  /** Create a default binary tree */
  public BinaryTree() {
  }

  /** Create a binary tree from an array of objects */
  public BinaryTree(Object[] objects) {
    for (int i = 0; i < objects.length; i++) {
      insert(objects[i]);
    }
  }

  /** Search element o in this binary tree */
  public boolean search(Object o) {
    return search(o, root);
  }

  public boolean search(Object o, TreeNode root) {
    if (root == null) {
      return false;
    }
    if (root.element.equals(o)) {
      return true;
    }
    else {
      return search(o, root.left) || search(o, root.right);
    }
  }

  /** Return the number of nodes in this binary tree */
  public int size() {
    return size(root);
  }

  public int size(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + size(root.left) + size(root.right);
    }
  }

  /** Return the depth of this binary tree. Depth is the
  * number of the nodes in the longest path of the tree */
  public int depth() {
    return depth(root);
  }

  public int depth(TreeNode root) {
    if (root == null) {
      return 0;
    }
    else {
      return 1 + Math.max(depth(root.left), depth(root.right));
    }
  }

  /** Insert element o into the binary tree
  * Return true if the element is inserted successfully */
  public boolean insert(Object o) {
    if (root == null) {
      root = new TreeNode(o); // Create a new root
    }
    else {
      // Locate the parent node
      TreeNode parent = null;
      TreeNode current = root;
      while (current != null) {
        if (((Comparable)o).compareTo(current.element) < 0) {
          parent = current;
          current = current.left;
        }
        else if (((Comparable)o).compareTo(current.element) > 0) {
          parent = current;
          current = current.right;
        }
        else {
          return false; // Duplicate node not inserted
        }
      }

      // Create the new node and attach it to the parent node
      if (((Comparable)o).compareTo(parent.element) < 0) {
        parent.left = new TreeNode(o);
      }
      else {
        parent.right = new TreeNode(o);
      }
    }

    return true; // Element inserted
  }

  public void breadth() {
  breadth(root);
  }

//  Implement this method to produce a breadth first

//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }


  /** Inorder traversal */
  public void inorder() {
    inorder(root);
  }

  /** Inorder traversal from a subtree */
  private void inorder(TreeNode root) {
    if (root == null) {
      return;
    }
    inorder(root.left);
    System.out.print(root.element + " ");
    inorder(root.right);
  }

  /** Postorder traversal */
  public void postorder() {
    postorder(root);
  }

  /** Postorder traversal from a subtree */
  private void postorder(TreeNode root) {
    if (root == null) {
      return;
    }
    postorder(root.left);
    postorder(root.right);
    System.out.print(root.element + " ");
  }

  /** Preorder traversal */
  public void preorder() {
    preorder(root);
  }

  /** Preorder traversal from a subtree */
  private void preorder(TreeNode root) {
    if (root == null) {
      return;
    }
    System.out.print(root.element + " ");
    preorder(root.left);
    preorder(root.right);

  }

  /** Inner class tree node */
  private class TreeNode {
    Object element;
    TreeNode left;
    TreeNode right;

    public TreeNode(Object o) {
      element = o;
    }
  }

}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(10

澉约 2024-10-28 20:51:24

广度优先搜索

Queue<TreeNode> queue = new LinkedList<BinaryTree.TreeNode>() ;
public void breadth(TreeNode root) {
    if (root == null)
        return;
    queue.clear();
    queue.add(root);
    while(!queue.isEmpty()){
        TreeNode node = queue.remove();
        System.out.print(node.element + " ");
        if(node.left != null) queue.add(node.left);
        if(node.right != null) queue.add(node.right);
    }

}

Breadth first search

Queue<TreeNode> queue = new LinkedList<BinaryTree.TreeNode>() ;
public void breadth(TreeNode root) {
    if (root == null)
        return;
    queue.clear();
    queue.add(root);
    while(!queue.isEmpty()){
        TreeNode node = queue.remove();
        System.out.print(node.element + " ");
        if(node.left != null) queue.add(node.left);
        if(node.right != null) queue.add(node.right);
    }

}
逆光飞翔i 2024-10-28 20:51:24

宽度优先是队列,深度优先是堆栈。

对于广度优先,将所有子项添加到队列中,然后拉出头并使用相同的队列对其进行广度优先搜索。

对于深度优先,将所有子节点添加到堆栈中,然后使用相同的堆栈弹出并在该节点上执行深度优先。

Breadth first is a queue, depth first is a stack.

For breadth first, add all children to the queue, then pull the head and do a breadth first search on it, using the same queue.

For depth first, add all children to the stack, then pop and do a depth first on that node, using the same stack.

淡墨 2024-10-28 20:51:24

您似乎并没有要求实施,所以我将尝试解释该过程。

使用队列。将根节点添加到队列中。循环运行直到队列为空。在循环内将第一个元素出列并将其打印出来。然后将其所有子级添加到队列的后面(通常从左到右)。

当队列为空时,每个元素都应该被打印出来。

另外,维基百科上对广度优先搜索有很好的解释: http://en.wikipedia.org /wiki/广度优先搜索

It doesn't seem like you're asking for an implementation, so I'll try to explain the process.

Use a Queue. Add the root node to the Queue. Have a loop run until the queue is empty. Inside the loop dequeue the first element and print it out. Then add all its children to the back of the queue (usually going from left to right).

When the queue is empty every element should have been printed out.

Also, there is a good explanation of breadth first search on wikipedia: http://en.wikipedia.org/wiki/Breadth-first_search

诗酒趁年少 2024-10-28 20:51:24
public void breadthFirstSearch(Node root, Consumer<String> c) {
    List<Node> queue = new LinkedList<>();

    queue.add(root);

    while (!queue.isEmpty()) {
        Node n = queue.remove(0);
        c.accept(n.value);

        if (n.left != null)
            queue.add(n.left);
        if (n.right != null)
            queue.add(n.right);
    }
}

和节点:

public static class Node {
    String value;
    Node left;
    Node right;

    public Node(final String value, final Node left, final Node right) {
        this.value = value;
        this.left = left;
        this.right = right;
    }
}
public void breadthFirstSearch(Node root, Consumer<String> c) {
    List<Node> queue = new LinkedList<>();

    queue.add(root);

    while (!queue.isEmpty()) {
        Node n = queue.remove(0);
        c.accept(n.value);

        if (n.left != null)
            queue.add(n.left);
        if (n.right != null)
            queue.add(n.right);
    }
}

And the Node:

public static class Node {
    String value;
    Node left;
    Node right;

    public Node(final String value, final Node left, final Node right) {
        this.value = value;
        this.left = left;
        this.right = right;
    }
}
暗地喜欢 2024-10-28 20:51:24
//traverse
public void traverse()
{
    if(node == null)
        System.out.println("Empty tree");
    else
    {
        Queue<Node> q= new LinkedList<Node>();
        q.add(node);
        while(q.peek() != null)
        {
            Node temp = q.remove();
            System.out.println(temp.getData());
            if(temp.left != null)
                q.add(temp.left);
            if(temp.right != null)
                q.add(temp.right);
        }
    }
}

}

//traverse
public void traverse()
{
    if(node == null)
        System.out.println("Empty tree");
    else
    {
        Queue<Node> q= new LinkedList<Node>();
        q.add(node);
        while(q.peek() != null)
        {
            Node temp = q.remove();
            System.out.println(temp.getData());
            if(temp.left != null)
                q.add(temp.left);
            if(temp.right != null)
                q.add(temp.right);
        }
    }
}

}

你的往事 2024-10-28 20:51:24

您编写的这段代码不会产生正确的 BFS 遍历:
(这是你声称是BFS的代码,但实际上这是DFS!)

//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }

This code which you have written, is not producing correct BFS traversal:
(This is the code you claimed is BFS, but in fact this is DFS!)

//  search traversal
  public void breadth(TreeNode root){
      if (root == null)
          return;

      System.out.print(root.element + " ");
      breadth(root.left);
      breadth(root.right);
 }
只怪假的太真实 2024-10-28 20:51:24

为了实现广度优先搜索,您应该使用队列。您应该将节点的子节点推送到队列(先左后右),然后访问该节点(打印数据)。然后,您应该从队列中删除该节点。您应该继续此过程,直到队列变空。你可以在这里看到我的 BFS 实现: https:/ /github.com/m-vahidalizadeh/foundations/blob/master/src/algorithms/TreeTraverse.java

For implementing the breadth first search, you should use a queue. You should push the children of a node to the queue (left then right) and then visit the node (print data). Then, yo should remove the node from the queue. You should continue this process till the queue becomes empty. You can see my implementation of the BFS here: https://github.com/m-vahidalizadeh/foundations/blob/master/src/algorithms/TreeTraverse.java

却一份温柔 2024-10-28 20:51:24

使用以下算法进行广度优先搜索的遍历 -

  1. 首先使用 put 方法将根节点添加到队列中。
  2. 当队列不为空时进行迭代。
  3. 获取队列中的第一个节点,然后打印其值。
  4. 将左子节点和右子节点都添加到队列中(如果当前
    节点有孩子)。
  5. 完毕。我们将逐级打印每个节点的值
    弹出/删除元素

代码写在下面-

    Queue<TreeNode> queue= new LinkedList<>();
    private void breadthWiseTraversal(TreeNode root) {
        if(root==null){
            return;
        }
        TreeNode temp = root;
        queue.clear();
        ((LinkedList<TreeNode>) queue).add(temp);
        while(!queue.isEmpty()){
            TreeNode ref= queue.remove();
            System.out.print(ref.data+" ");
            if(ref.left!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.left);
            }
            if(ref.right!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.right);
            }
        }
    }

Use the following algorithm to traverse in breadth first search-

  1. First add the root node into the queue with the put method.
  2. Iterate while the queue is not empty.
  3. Get the first node in the queue, and then print its value.
  4. Add both left and right children into the queue (if the current
    nodehas children).
  5. Done. We will print the value of each node, level by level,by
    poping/removing the element

Code is written below-

    Queue<TreeNode> queue= new LinkedList<>();
    private void breadthWiseTraversal(TreeNode root) {
        if(root==null){
            return;
        }
        TreeNode temp = root;
        queue.clear();
        ((LinkedList<TreeNode>) queue).add(temp);
        while(!queue.isEmpty()){
            TreeNode ref= queue.remove();
            System.out.print(ref.data+" ");
            if(ref.left!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.left);
            }
            if(ref.right!=null) {
                ((LinkedList<TreeNode>) queue).add(ref.right);
            }
        }
    }
月牙弯弯 2024-10-28 20:51:24

以下是使用 java 8 语法的 BinaryTree 的简单 BFS 实现。

void bfsTraverse(Node node, Queue<Node> tq) {
    if (node == null) {
        return;
    }
    System.out.print(" " + node.value);
    Optional.ofNullable(node.left).ifPresent(tq::add);
    Optional.ofNullable(node.right).ifPresent(tq::add);
    bfsTraverse(tq.poll(), tq);
}

然后使用根节点和 Java 队列实现调用它。

bfsTraverse(root, new LinkedList<>());

如果它是常规树,则更好,可以使用以下行代替,因为不仅有左节点和右节点。

Optional.ofNullable(node.getChildern()).ifPresent(tq::addAll);

The following is a simple BFS implementation for BinaryTree with java 8 syntax.

void bfsTraverse(Node node, Queue<Node> tq) {
    if (node == null) {
        return;
    }
    System.out.print(" " + node.value);
    Optional.ofNullable(node.left).ifPresent(tq::add);
    Optional.ofNullable(node.right).ifPresent(tq::add);
    bfsTraverse(tq.poll(), tq);
}

Then invoke this with root node and a Java Queue implementation

bfsTraverse(root, new LinkedList<>());

Even better if it is regular tree, could use following line instead as there is not only left and right nodes.

Optional.ofNullable(node.getChildern()).ifPresent(tq::addAll);
心奴独伤 2024-10-28 20:51:24
public static boolean BFS(ListNode n, int x){
        if(n==null){
           return false;
       }
Queue<ListNode<Integer>> q = new Queue<ListNode<Integer>>();
ListNode<Integer> tmp = new ListNode<Integer>(); 
q.enqueue(n);
tmp = q.dequeue();
if(tmp.val == x){
    return true;
}
while(tmp != null){
    for(ListNode<Integer> child: n.getChildren()){
        if(child.val == x){
            return true;
        }
        q.enqueue(child);
    }

    tmp = q.dequeue();
}
return false;
}
public static boolean BFS(ListNode n, int x){
        if(n==null){
           return false;
       }
Queue<ListNode<Integer>> q = new Queue<ListNode<Integer>>();
ListNode<Integer> tmp = new ListNode<Integer>(); 
q.enqueue(n);
tmp = q.dequeue();
if(tmp.val == x){
    return true;
}
while(tmp != null){
    for(ListNode<Integer> child: n.getChildren()){
        if(child.val == x){
            return true;
        }
        q.enqueue(child);
    }

    tmp = q.dequeue();
}
return false;
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文