从几个余数中恢复一个数(中国余数定理)

发布于 2024-10-21 19:32:54 字数 757 浏览 1 评论 0原文

我有一个长整数,但它不是以十进制形式存储,而是作为余数集存储。

所以,我没有 N 数字,而是一组这样的余数:

r_1 = N % 2147483743
r_2 = N % 2147483713
r_3 = N % 2147483693
r_4 = N % 2147483659
r_5 = N % 2147483647
r_6 = N % 2147483629

我知道,N 小于这些素数的乘积,所以中国余数定理在这里确实有效( http://en.wikipedia.org/wiki/Chinese_remainder_theorem )。

如果我有这 6 个余数,我怎样才能以十进制恢复 N 任何程序都可以做到这一点(C/C+GMP/C++/perl/java /公元前)。

例如,最小 N 可以得到这组余数:

r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)

I have a long integer number, but it is stored not in decimal form, but as set of remainders.

So, I have not the N number, but set of such remainders:

r_1 = N % 2147483743
r_2 = N % 2147483713
r_3 = N % 2147483693
r_4 = N % 2147483659
r_5 = N % 2147483647
r_6 = N % 2147483629

I know, that N is less than multiplication of these primes, so chinese remainder theorem does work here ( http://en.wikipedia.org/wiki/Chinese_remainder_theorem ).

How can I restore N in decimal, if I have this 6 remainders? The wonderful will be any program to do this (C/C+GMP/C++/perl/java/bc).

For example, what minimal N can have this set of remainders:

r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

一念一轮回 2024-10-28 19:32:54

您链接的文章已经提供了寻找解决方案的建设性算法

基本上,对于每个i,您求解整数方程ri*ni + si*(N/ni) = 1,其中N = n1*n2*n3*.. .risi 在这里是未知的。这可以通过扩展欧几里德算法来解决。它非常流行,您可以毫无问题地找到任何语言的示例实现。

然后,假设ei = si*(N/ni),则每个i的答案是sum(ei*ai)
所有这些都在那篇文章中进行了描述,并附有证据和示例。

The article you link already provides a constructive algorithm to find the solution.

Basically, for each i you solve integer equation ri*ni + si*(N/ni) = 1 where N = n1*n2*n3*.... The ri and si are unknowns here. This can be solved by extended euclidean algorithm. It's very popular and you'll have no problem finding sample implementations in any language.

Then, assuming ei = si*(N/ni), the answer is sum(ei*ai) for every i.
All this is described in that article, with proof and example.

御弟哥哥 2024-10-28 19:32:54

这里是代码 (C+GMP),基于 Ben Lynn blynn@github 的 LGPL 代码; stanford 的 Garner 算法(通过 RIP Google Code Search 通过查询 garner mpz_t 找到):
https://github.com/blynn/pbc/blob/master/guru /indexcalculus.c
(他的 PBC(基于配对的加密)库的一部分)

使用 gcc -std=c99 -lgmp 进行编译。还要根据您的情况更改尺寸。

#include <gmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

// Garner's Algorithm.
// See Algorithm 14.71, Handbook of Cryptography.

//    x - result    v residuals    m - primes   t-size of vectors
static void CRT(mpz_t x, mpz_ptr *v, mpz_ptr *m, int t) {
  mpz_t u;
  mpz_t C[t];
  int i, j;

  mpz_init(u);
  for (i=1; i<t; i++) {
    mpz_init(C[i]);
    mpz_set_ui(C[i], 1);
    for (j=0; j<i; j++) {
      mpz_invert(u, m[j], m[i]);
      mpz_mul(C[i], C[i], u);
      mpz_mod(C[i], C[i], m[i]);
    }
  }
  mpz_set(u, v[0]);
  mpz_set(x, u);
  for (i=1; i<t; i++) {
    mpz_sub(u, v[i], x);
    mpz_mul(u, u, C[i]);
    mpz_mod(u, u, m[i]);
    for (j=0; j<i; j++) {
      mpz_mul(u, u, m[j]);
    }
    mpz_add(x, x, u);
  }

  for (i=1; i<t; i++) mpz_clear(C[i]);
  mpz_clear(u);
}

const int size=6; // Change this please

int main()
{
    mpz_t res;
    mpz_ptr t[size], p[size];
    for(int i=0;i<size;i++) { 
        t[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        p[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        mpz_init(p[i]);
        mpz_init(t[i]);
    }
    mpz_init(res);

    for(int i=0;i<size;i++){
        unsigned long rr,pp;
        scanf("%*c%*c%*c = %lu (%% %lu)\n",&rr,&pp);
        printf("Got %lu res on mod %% %lu \n",rr,pp);
        mpz_set_ui(p[i],pp);
        mpz_set_ui(t[i],rr);
    }

    CRT(res,t,p,size);

    gmp_printf("N = %Zd\n", res);
}

示例已解决:

$ ./a.out
r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)

Got 1246736738 res on mod % 2147483743 
Got 748761 res on mod % 2147483713 
Got 1829651881 res on mod % 2147483693 
Got 2008266397 res on mod % 2147483659 
Got 748030137 res on mod % 2147483647 
Got 1460049539 res on mod % 2147483629 
N = 703066055325632897509116263399480311

N 为 703066055325632897509116263399480311

Here the code (C+GMP), based on this LGPL code by Ben Lynn blynn@github; stanford of Garner algorithm (found with RIP Google Code Search by query garner mpz_t):
https://github.com/blynn/pbc/blob/master/guru/indexcalculus.c
(Part of his The PBC (Pairing-Based Crypto) library)

Compile with gcc -std=c99 -lgmp. Also change size for your case.

#include <gmp.h>
#include <stdlib.h>
#include <stdio.h>
#include <malloc.h>

// Garner's Algorithm.
// See Algorithm 14.71, Handbook of Cryptography.

//    x - result    v residuals    m - primes   t-size of vectors
static void CRT(mpz_t x, mpz_ptr *v, mpz_ptr *m, int t) {
  mpz_t u;
  mpz_t C[t];
  int i, j;

  mpz_init(u);
  for (i=1; i<t; i++) {
    mpz_init(C[i]);
    mpz_set_ui(C[i], 1);
    for (j=0; j<i; j++) {
      mpz_invert(u, m[j], m[i]);
      mpz_mul(C[i], C[i], u);
      mpz_mod(C[i], C[i], m[i]);
    }
  }
  mpz_set(u, v[0]);
  mpz_set(x, u);
  for (i=1; i<t; i++) {
    mpz_sub(u, v[i], x);
    mpz_mul(u, u, C[i]);
    mpz_mod(u, u, m[i]);
    for (j=0; j<i; j++) {
      mpz_mul(u, u, m[j]);
    }
    mpz_add(x, x, u);
  }

  for (i=1; i<t; i++) mpz_clear(C[i]);
  mpz_clear(u);
}

const int size=6; // Change this please

int main()
{
    mpz_t res;
    mpz_ptr t[size], p[size];
    for(int i=0;i<size;i++) { 
        t[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        p[i]=(mpz_ptr)malloc(sizeof(mpz_t));
        mpz_init(p[i]);
        mpz_init(t[i]);
    }
    mpz_init(res);

    for(int i=0;i<size;i++){
        unsigned long rr,pp;
        scanf("%*c%*c%*c = %lu (%% %lu)\n",&rr,&pp);
        printf("Got %lu res on mod %% %lu \n",rr,pp);
        mpz_set_ui(p[i],pp);
        mpz_set_ui(t[i],rr);
    }

    CRT(res,t,p,size);

    gmp_printf("N = %Zd\n", res);
}

Example is solved:

$ ./a.out
r_1 = 1246736738 (% 2147483743)
r_2 = 748761 (% 2147483713)
r_3 = 1829651881 (% 2147483693)
r_4 = 2008266397 (% 2147483659)
r_5 = 748030137 (% 2147483647)
r_6 = 1460049539 (% 2147483629)

Got 1246736738 res on mod % 2147483743 
Got 748761 res on mod % 2147483713 
Got 1829651881 res on mod % 2147483693 
Got 2008266397 res on mod % 2147483659 
Got 748030137 res on mod % 2147483647 
Got 1460049539 res on mod % 2147483629 
N = 703066055325632897509116263399480311

N is 703066055325632897509116263399480311

孤云独去闲 2024-10-28 19:32:54

以下是基于此 Rosetta Code 任务的 Python 3 实现:https://rosettacode.org/wiki/Chinese_remainder_theorem

from functools import reduce
from operator import mul    

def chinese_remainder(n, a):
    """
    Chinese Remainder Theorem.

    :param n: list of pairwise relatively prime integers
    :param a: remainders when x is divided by n
    """
    s = 0
    prod = reduce(mul, n)
    for n_i, a_i in zip(n, a):
        p = prod // n_i
        s += a_i * inverse(p, n_i) * p
    return s % prod    

def inverse(a, b):
    """
    Modular multiplicative inverse.
    """
    b0 = b
    x0, x1 = 0, 1
    if b == 1:
        return 1
    while a > 1:
        q = a // b
        a, b = b, a % b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0:
        x1 += b0
    return x1    

n = [2147483743, 2147483713, 2147483693, 2147483659, 2147483647, 2147483629]
a = [1246736738, 748761, 1829651881, 2008266397, 748030137, 1460049539]

print(chinese_remainder(n, a))  # 703066055325632897509116263399480311

Python 的一个很好的特性是它天然支持任意大的整数。

Here's a Python 3 implementation, based on this Rosetta Code task: https://rosettacode.org/wiki/Chinese_remainder_theorem

from functools import reduce
from operator import mul    

def chinese_remainder(n, a):
    """
    Chinese Remainder Theorem.

    :param n: list of pairwise relatively prime integers
    :param a: remainders when x is divided by n
    """
    s = 0
    prod = reduce(mul, n)
    for n_i, a_i in zip(n, a):
        p = prod // n_i
        s += a_i * inverse(p, n_i) * p
    return s % prod    

def inverse(a, b):
    """
    Modular multiplicative inverse.
    """
    b0 = b
    x0, x1 = 0, 1
    if b == 1:
        return 1
    while a > 1:
        q = a // b
        a, b = b, a % b
        x0, x1 = x1 - q * x0, x0
    if x1 < 0:
        x1 += b0
    return x1    

n = [2147483743, 2147483713, 2147483693, 2147483659, 2147483647, 2147483629]
a = [1246736738, 748761, 1829651881, 2008266397, 748030137, 1460049539]

print(chinese_remainder(n, a))  # 703066055325632897509116263399480311

A nice feature of Python is that it supports arbitrarily large integers naturally.

满身野味 2024-10-28 19:32:54

只需添加此处的一点理论及其逐字实现python

在此处输入图像描述

from math import prod
    
def CRT_residue(a, m):
    # assert len(a) == len(m)
    n, P = len(a), prod(m)
    M = [P // m[i] for i in range(n)]  # M_i s
    # modular inverse of M_i to be computed with Extended Euclid algorithm
    # extract the Bézout coefficient corresponding to M_i
    N = [gcd_ext(M[i], m[i])[1] for i in range(n)] # N_i s
    return sum([a[i]*M[i]*N[i] for i in range(n)]) % P

def gcd_ext(a, b): # Extended Euclid algorithm
    x0, y0 = 1, 0
    x1, y1 = 0, 1
    while b:
        q = a // b
        x0, x1 = x1, x0 - q * x1
        y0, y1 = y1, y0 - q * y1
        a, b = b, a % b
    return a, x0, y0 # return GCD and the Bézout coefficients

# given example
m = [2147483743, 2147483713, 2147483693, 2147483659, 2147483647, 2147483629]
a = [1246736738, 748761, 1829651881, 2008266397, 748030137, 1460049539]
print(CRT_residue(a, m))
# 703066055325632897509116263399480311

另一种可能性是使用 加纳算法

Just adding a little bit of theory from here and its verbatim implementation with python:

enter image description here

from math import prod
    
def CRT_residue(a, m):
    # assert len(a) == len(m)
    n, P = len(a), prod(m)
    M = [P // m[i] for i in range(n)]  # M_i s
    # modular inverse of M_i to be computed with Extended Euclid algorithm
    # extract the Bézout coefficient corresponding to M_i
    N = [gcd_ext(M[i], m[i])[1] for i in range(n)] # N_i s
    return sum([a[i]*M[i]*N[i] for i in range(n)]) % P

def gcd_ext(a, b): # Extended Euclid algorithm
    x0, y0 = 1, 0
    x1, y1 = 0, 1
    while b:
        q = a // b
        x0, x1 = x1, x0 - q * x1
        y0, y1 = y1, y0 - q * y1
        a, b = b, a % b
    return a, x0, y0 # return GCD and the Bézout coefficients

# given example
m = [2147483743, 2147483713, 2147483693, 2147483659, 2147483647, 2147483629]
a = [1246736738, 748761, 1829651881, 2008266397, 748030137, 1460049539]
print(CRT_residue(a, m))
# 703066055325632897509116263399480311

Another possibility is to use the Garner's algorithm.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文