如何计算 (A + B) * (A + B) ? A、B 是矩阵

发布于 2024-10-21 10:01:24 字数 6260 浏览 1 评论 0原文

我有2个练习,一个使用struct,另一个使用class,使用+、*重载来计算矩阵。

我的矩阵类型:

struct matrix 
{
   int** a;
   int m;
   int n;
};

其中“m”,“n”是行数和列数,“a”是指向指针的指针,将在运行时动态分配内存。

重载的运算符有:+、*、+=、*=

我对 2 个矩阵(无论是加法还是乘法)都没有问题。但是当我需要显示 (A + B) * (A + B) 表达式的值时,我遇到了麻烦。请注意,A + (A * B) 即可。

我尝试显示整个表情,它似乎溢出了。然后我声明一个矩阵类型C,赋值C = A + B,C是正确的。但是如果我显示 C * C,结果仍然相同,非常糟糕,尽管 A * A 很好。

有人可以解释我的问题吗?我该如何修复它?

我用两个 4x4 矩阵进行测试,它们的元素编号从 1 到 16。

我的代码:

#include <iostream>
using namespace std;
struct matrix
{
    int** a;
    int m;
    int n;
};
matrix temp;

matrix InputMatrix(matrix &mat)
{
    for (int i=0; i <= mat.m-1; i++)
    {
        for (int j=0; j <= mat.n-1; j++)
        {
            cout.width(5);
            cout << "[" << i+1 << "," << j+1 << "] = ";

            *(*(mat.a + i) + j) = i*mat.m + j + 1;
            cout << *(*(mat.a + i) + j);

            /*int x = rand()%20; // random matrix
            cout << x;
            *(*(mat.a + i) + j) = x;*/
        }
        cout << endl;
    }
    return mat;
}

int AllocMatrix(matrix &mat)
{
    mat.a = new int*[mat.m];
    if (mat.a == NULL)
    {
        return 0;
    }
    for (int i=0; i <= mat.m-1; i++)
    {
        *(mat.a + i) = new int[mat.n];
        if (*(mat.a + i) == NULL)
        {
            return 0;
        }
    }
    return 1;
}
int FreeMatrix(matrix &mat)
{
    if (mat.a != NULL)
    {
        delete [] mat.a;
    }
    return 0;
}

int DispMatrix(const matrix &mat)
{
    for (int i=0; i <= mat.m-1; i++)
    {
        for (int j=0; j<= mat.n-1; j++)
        {
            cout.width(7);
            cout << *(*(mat.a + i) + j);
        }
        cout << endl;
    }
    cout << endl;
    return 0;
}

matrix & operator +(const matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + *(*(mat2.a + i) + j);
        }
    }
    return temp;
}

matrix & operator +(const matrix &mat1, const int k)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + k;
        }
    }
    return temp;
}

matrix & operator +=(matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat1.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + *(*(mat2.a + i) + j);
        }
    }
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(mat1.a + i) + j) = *(*(temp.a + i) + j);
        }
    }
    return mat1;
}

matrix &  operator *(const matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat2.n-1; j++)
        {
            int tong = 0;
            for (int k=0; k <= mat2.m-1; k++)
            {
                tong += (*(*(mat1.a + i) + k)) * (*(*(mat2.a + k) + j));
            }
            *(*(temp.a + i) + j) = tong;
        }
    }
    return temp;
}
matrix &  operator *(const matrix &mat1, const int k)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) * k;
        }
    }
    return temp;
}

matrix &  operator *=(matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat2.n-1; j++)
        {
            int tong = 0;
            for (int k=0; k <= mat2.m-1; k++)
            {
                tong += (*(*(mat1.a + i) + k)) * (*(*(mat2.a + k) + j));
            }
            *(*(temp.a + i) + j) = tong;
        }
    }
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(mat1.a + i) + j) = *(*(temp.a + i) + j);
        }
    }
    return mat1;
}

int main()
{
    matrix mat1, mat2, mat3;
    int m1 = 0, n1 = 0, m2 = 0, n2 = 0;

    m1 = m2 = n1 = n2 = 4;

    mat1.m = m1;
    mat1.n = n1;

    mat2.m = m2;
    mat2.n = n2;

    mat3.m = m1;
    mat3.n = n1;
    AllocMatrix(mat3);

    if (!AllocMatrix(mat1))
    {
        cout << "Out of memory!" << endl;
        FreeMatrix(mat1);
        return 1;
    }
    if (!AllocMatrix(mat2))
    {
        cout << "Out of memory!" << endl;
        FreeMatrix(mat1);
        FreeMatrix(mat2);
        return 1;
    }
    cout << "Matrix - 1:" << endl;
    mat1 = InputMatrix(mat1);
    cout << "Matrix - 2:" << endl;
    mat2 = InputMatrix(mat2);

    if ((mat1.m == mat2.m)&&(mat1.n == mat2.n))
    {
        temp.m = mat1.m;
        temp.n = mat1.n;
        if (!AllocMatrix(temp))
        {
            cout << "Out of memory!" << endl;
            FreeMatrix(mat1);
            FreeMatrix(mat2);
            FreeMatrix(temp);
            return 1;
        }
        cout << "Ressult: " << endl;
        mat3 = mat1 + mat2;
        DispMatrix(mat3);
        DispMatrix(mat3 * mat3);
        FreeMatrix(temp);
    }

    FreeMatrix(mat1);
    FreeMatrix(mat2);
    system("pause");
    return 0;
}

结果:

Matrix - 1:
    [1,1] = 1    [1,2] = 2    [1,3] = 3    [1,4] = 4
    [2,1] = 5    [2,2] = 6    [2,3] = 7    [2,4] = 8
    [3,1] = 9    [3,2] = 10    [3,3] = 11    [3,4] = 12
    [4,1] = 13    [4,2] = 14    [4,3] = 15    [4,4] = 16
Matrix - 2:
    [1,1] = 1    [1,2] = 2    [1,3] = 3    [1,4] = 4
    [2,1] = 5    [2,2] = 6    [2,3] = 7    [2,4] = 8
    [3,1] = 9    [3,2] = 10    [3,3] = 11    [3,4] = 12
    [4,1] = 13    [4,2] = 14    [4,3] = 15    [4,4] = 16
Ressult:
      2      4      6      8
     10     12     14     16
     18     20     22     24
     26     28     30     32

    360   1832  28180 708768
   43888039688236210260317821152
  95260335311192-6444114522130541536
2990856-14161730721164069912-1507182592

I have 2 exercises, one uses struct and the other uses class, use +, * overloadings to calculate with matrices.

My Matrix type:

struct matrix 
{
   int** a;
   int m;
   int n;
};

Which "m", "n" are the number of rows and columns, "a" is a pointer-to-pointer that will be dynamic memory allocated in run-time.

And Operators overloaded are: +, *, +=, *=

I have no problem with 2 matrices, in both addition and multiplication. But I get in trouble when I need to display the value of (A + B) * (A + B) expression. Note that A + (A * B) is ok.

I try to display the whole of expression, it seems to be overflow. Then I declare a matrix type C, assign C = A + B, C is correct. But if I display C * C, the result remains the same, very bad, although A * A is nice.

Can someone explain my problem? How can I fix it?

I test with two 4x4 matrices, their elements are numbered from 1 to 16.

My code:

#include <iostream>
using namespace std;
struct matrix
{
    int** a;
    int m;
    int n;
};
matrix temp;

matrix InputMatrix(matrix &mat)
{
    for (int i=0; i <= mat.m-1; i++)
    {
        for (int j=0; j <= mat.n-1; j++)
        {
            cout.width(5);
            cout << "[" << i+1 << "," << j+1 << "] = ";

            *(*(mat.a + i) + j) = i*mat.m + j + 1;
            cout << *(*(mat.a + i) + j);

            /*int x = rand()%20; // random matrix
            cout << x;
            *(*(mat.a + i) + j) = x;*/
        }
        cout << endl;
    }
    return mat;
}

int AllocMatrix(matrix &mat)
{
    mat.a = new int*[mat.m];
    if (mat.a == NULL)
    {
        return 0;
    }
    for (int i=0; i <= mat.m-1; i++)
    {
        *(mat.a + i) = new int[mat.n];
        if (*(mat.a + i) == NULL)
        {
            return 0;
        }
    }
    return 1;
}
int FreeMatrix(matrix &mat)
{
    if (mat.a != NULL)
    {
        delete [] mat.a;
    }
    return 0;
}

int DispMatrix(const matrix &mat)
{
    for (int i=0; i <= mat.m-1; i++)
    {
        for (int j=0; j<= mat.n-1; j++)
        {
            cout.width(7);
            cout << *(*(mat.a + i) + j);
        }
        cout << endl;
    }
    cout << endl;
    return 0;
}

matrix & operator +(const matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + *(*(mat2.a + i) + j);
        }
    }
    return temp;
}

matrix & operator +(const matrix &mat1, const int k)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + k;
        }
    }
    return temp;
}

matrix & operator +=(matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat1.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) + *(*(mat2.a + i) + j);
        }
    }
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(mat1.a + i) + j) = *(*(temp.a + i) + j);
        }
    }
    return mat1;
}

matrix &  operator *(const matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat2.n-1; j++)
        {
            int tong = 0;
            for (int k=0; k <= mat2.m-1; k++)
            {
                tong += (*(*(mat1.a + i) + k)) * (*(*(mat2.a + k) + j));
            }
            *(*(temp.a + i) + j) = tong;
        }
    }
    return temp;
}
matrix &  operator *(const matrix &mat1, const int k)
{
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(temp.a + i) + j) = *(*(mat1.a + i) + j) * k;
        }
    }
    return temp;
}

matrix &  operator *=(matrix &mat1, const matrix &mat2)
{
    for (int i=0; i <= mat1.m-1; i++)
    {
        for (int j=0; j <= mat2.n-1; j++)
        {
            int tong = 0;
            for (int k=0; k <= mat2.m-1; k++)
            {
                tong += (*(*(mat1.a + i) + k)) * (*(*(mat2.a + k) + j));
            }
            *(*(temp.a + i) + j) = tong;
        }
    }
    for (int i=0; i <= temp.m-1; i++)
    {
        for (int j=0; j <= temp.n-1; j++)
        {
            *(*(mat1.a + i) + j) = *(*(temp.a + i) + j);
        }
    }
    return mat1;
}

int main()
{
    matrix mat1, mat2, mat3;
    int m1 = 0, n1 = 0, m2 = 0, n2 = 0;

    m1 = m2 = n1 = n2 = 4;

    mat1.m = m1;
    mat1.n = n1;

    mat2.m = m2;
    mat2.n = n2;

    mat3.m = m1;
    mat3.n = n1;
    AllocMatrix(mat3);

    if (!AllocMatrix(mat1))
    {
        cout << "Out of memory!" << endl;
        FreeMatrix(mat1);
        return 1;
    }
    if (!AllocMatrix(mat2))
    {
        cout << "Out of memory!" << endl;
        FreeMatrix(mat1);
        FreeMatrix(mat2);
        return 1;
    }
    cout << "Matrix - 1:" << endl;
    mat1 = InputMatrix(mat1);
    cout << "Matrix - 2:" << endl;
    mat2 = InputMatrix(mat2);

    if ((mat1.m == mat2.m)&&(mat1.n == mat2.n))
    {
        temp.m = mat1.m;
        temp.n = mat1.n;
        if (!AllocMatrix(temp))
        {
            cout << "Out of memory!" << endl;
            FreeMatrix(mat1);
            FreeMatrix(mat2);
            FreeMatrix(temp);
            return 1;
        }
        cout << "Ressult: " << endl;
        mat3 = mat1 + mat2;
        DispMatrix(mat3);
        DispMatrix(mat3 * mat3);
        FreeMatrix(temp);
    }

    FreeMatrix(mat1);
    FreeMatrix(mat2);
    system("pause");
    return 0;
}

Result:

Matrix - 1:
    [1,1] = 1    [1,2] = 2    [1,3] = 3    [1,4] = 4
    [2,1] = 5    [2,2] = 6    [2,3] = 7    [2,4] = 8
    [3,1] = 9    [3,2] = 10    [3,3] = 11    [3,4] = 12
    [4,1] = 13    [4,2] = 14    [4,3] = 15    [4,4] = 16
Matrix - 2:
    [1,1] = 1    [1,2] = 2    [1,3] = 3    [1,4] = 4
    [2,1] = 5    [2,2] = 6    [2,3] = 7    [2,4] = 8
    [3,1] = 9    [3,2] = 10    [3,3] = 11    [3,4] = 12
    [4,1] = 13    [4,2] = 14    [4,3] = 15    [4,4] = 16
Ressult:
      2      4      6      8
     10     12     14     16
     18     20     22     24
     26     28     30     32

    360   1832  28180 708768
   43888039688236210260317821152
  95260335311192-6444114522130541536
2990856-14161730721164069912-1507182592

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

↙温凉少女 2024-10-28 10:01:24

一些评论:

1:使用成员方法而不是函数
2:不要使用using namespace std
3:如果一个数组有 m 个成员,则更传统的是使用 <在 for 循环中。

for (int i=0; i <= mat.m-1; i++)

// More traditional to use:

for (int i=0; i < mat.m; ++i)

4:使用比i更长的变量名称。尝试在代码中搜索变量“i”的所有实例。您会得到很多误报。像 loopM 这样的东西会更容易阅读。

5:使用[]运算符

*(*(mat.a + i) + j) = BLA;

// Cab be written as:

mat.a[i][j] = BLA;

6:正常情况下new永远不会返回NULL。因此,不要编写检查它的代码。如果失败,将会抛出异常。这允许您从正常代码流中删除错误检测代码并处理异常中的错误。

mat.a = new int*[mat.m];
// This is a waste of time. Here mat.a will NEVER be NULL
if (mat.a == NULL)
{
    return 0;
}

7:删除NULL对象是可以的。因此,在删除之前不要测试 NULL。

if (mat.a != NULL)
{
    delete [] mat.a;
}

// If it is NULL nothing bad will happen.

delete [] mat.a

8:您忘记删除所有成员。
注意:如果您使用了构造函数/析构函数,我会更有信心这是正确的,因为编译器将保证如果构造函数抛出异常,则不会调用析构函数。另一方面,您对函数的使用并不能保证这一点,您可能会捕获异常并仍然在无效的矩阵对象上执行 FreeMatrix()。但由于您当前的代码没有异常处理,我觉得它会起作用。

 for(int loop = 0;loop < m;++loop)
 { 
     delete [] mat.a[loop];
 }
 delete [] mat.a;

9:你的运算符 + 似乎使用了一些随机临时变量?
更喜欢在函数内声明 temp 并返回一个副本。但要使其工作,您将需要正确的复制构造函数和赋值运算符(见下文)。

matrix operator +(const matrix &mat1, const matrix &mat2) 
{
    matrix temp;  // add mat1 and mat2 into temp
}
return temp;

10:在你的 += 函数中。将这些值求和到一个临时变量中,然后重新分配回 mat1。没有理由不这样做。

11:每行只声明一个变量。

matrix mat1, mat2, mat3;

// All coding standards say use:

matrix     mat1;
matrix     mat2;
matrix     mat3;

原因是它捕获了一些与指针相关的问题。在我看来,它还使代码更易于阅读(这也是一个优点)。所有公司都会开始使用它,所以只要习惯它即可。

12:您的矩阵分配永远不会失败(如前所述)。它会抛出一个异常。所以填充永远不会打印“内存不足”。另外我会注意到您返回的是一个整数,其中 bool 是指示失败的更好类型(如果您可以指示失败)。

if (!AllocMatrix(mat1))
{
    //
    // This will never be executed. EVER.
    //
    cout << "Out of memory!" << endl;
    FreeMatrix(mat1);
    return 1;
}

13:这里我们有一个潜在的问题。您的代码正在按照您的预期执行operator +。但它也在执行matrix::operator=。您没有定义此方法,但编译器自动生成此方法的代码。而且它并没有按照你的想法去做。幸运的是你没有释放 mat3 因此它没有爆炸。

    mat3 = mat1 + mat2;

类(或结构)包含由(分配然后指针并删除它们)拥有的指针的任何代码都需要遵守 3 的规则(加上有正确的构造函数)。

struct matrix 
{
   int** a;
   int m;
   int n;
};

原因是,如果您实际上没有专门禁用它们,编译器将为您生成 4 个方法。如果您开始手动分配/删除内存,其中两种方法(复制构造和赋值运算符)将导致您的释放难以正确完成。因此,您应该禁用它们或显式定义所有 4 个编译器生成的方法。

在您的情况下,编译器会生成以下 4 个方法:

matrix::matrix() { /* Do nothing or value initialize */ }
matrix::~matrxc(){ /* Do nothing */ }
matrix::matrix(matrix const& rhs)
    : a(rhs.a)
    , m(rhs.m)
    , n(rhs.n)
{}
matrix& matrix::operator+(matrix const& rhs)
{
    a = rhs.a;
    m = rhs.m;
    n = rhs.n;
    return *this;
} 

现在考虑以下代码将执行的操作:

matrix  m1;
m1.m = 5;
m1.n = 5;
AllocMatrix(m1));

matrix  m2;
m2.m = 5;
m2.n = 5;
AllocMatrix(m2));

m2 = m1;  /* Simplified version of m3 = m1 + m2; */
          // The problem is that the a member is being copied from m1 to m2.
          // But the copy is a shallow copy. So now both m1 and m2 point at the same
          // piece of memory.

FreeMatrix(m2);  // Frees m2.a
FreeMatrix(m1);  // Whops. This Frees m1.a but it points at the same memory as m2.a
                 //        So now you have a double delete.

14:关注点分离。

这是一项需要学习的重要技术。这意味着一个类应该做一件事。它要么应该包含执行某些业务逻辑的逻辑,要么应该包含内存管理(或其他管理内容)。它不应该两者兼而有之。

这意味着您的矩阵对象应该专注于执行矩阵运算的逻辑,并将内存管理委托给专门为内存管理设计的另一种对象类型。我将就此保留,因为 Charles Bailey 在他的回答中详细介绍了这一点。

Some comments:

1: Use member methods rather than functions
2: Don't use using namespace std.
3: If an array has m members it is more traditional to use < in the for loops.

for (int i=0; i <= mat.m-1; i++)

// More traditional to use:

for (int i=0; i < mat.m; ++i)

4: Use longer variables names than i. Try searching the code for all the instance of the variable 'i'. You will get a lot of false positive hits. Something like loopM would be easier to read.

5: Use the [] operator

*(*(mat.a + i) + j) = BLA;

// Cab be written as:

mat.a[i][j] = BLA;

6: Under normal situations new will never return NULL. So do not write code that checks for it. If it fails an exception will be thrown. This allows you to remove error detection code from normal code flow and handle the errors in exceptions.

mat.a = new int*[mat.m];
// This is a waste of time. Here mat.a will NEVER be NULL
if (mat.a == NULL)
{
    return 0;
}

7: It is OK to delete NULL objects. So don' test for NULL before a delete.

if (mat.a != NULL)
{
    delete [] mat.a;
}

// If it is NULL nothing bad will happen.

delete [] mat.a

8: You forgot to delete all the members.
Note: I would be more confident this is correct if you had used constructor/destructor as the compiler will guarantee that destructor is not called if the constructor throws an exception. On the other hand your use of functions does not guarantee this and you may catch an exception and still execute the FreeMatrix() on an invalid matrix object. But since your current code has no exception handling I feel safe it will work.

 for(int loop = 0;loop < m;++loop)
 { 
     delete [] mat.a[loop];
 }
 delete [] mat.a;

9: Your operator + seems to use some random temp variable?
Prefer to declare temp inside the function and return a copy. But for this to work you will need correct copy constructor and assignment operator (see below).

matrix operator +(const matrix &mat1, const matrix &mat2) 
{
    matrix temp;  // add mat1 and mat2 into temp
}
return temp;

10: In your += function. You sum the values into a temp variable then re-assign back to the mat1. There is no reason not to do this in place.

11: Only declare one variable per line.

matrix mat1, mat2, mat3;

// All coding standards say use:

matrix     mat1;
matrix     mat2;
matrix     mat3;

The reason is it catches a couple of problems associated with pointers. In my opinion it also makes the code easier to read (which is also a plus). All compaies will inisit on it so just get used to it.

12: Your matrix allocation will never fail (as pointed out previously). It will throw an expcetion. So the fillowing will never print "Out of memory". Also I would note you are returning an integer where a bool would have been a better type to indicate failure (if you could have indicated failure).

if (!AllocMatrix(mat1))
{
    //
    // This will never be executed. EVER.
    //
    cout << "Out of memory!" << endl;
    FreeMatrix(mat1);
    return 1;
}

13: Here we have a potential problem. Your code is executing operator + as you expect. But it is also executing matrix::operator=. You did not define this but the compiler automatically generated the code for this method. And it is not doing what you think. Luckily you do not free mat3 thus it is not blowing up.

    mat3 = mat1 + mat2;

Any code where where a class (or struct) contains pointers that are owned by (you allocate then pointers and delete them), needs to obey the rule of 3 (plus have a correct constructor).

struct matrix 
{
   int** a;
   int m;
   int n;
};

The reason is that if you do not actually specifically disable them the compiler will generate 4 methods for you. If you start manually allocating/deleting the memory two of these methods (copy construct and assignment operator) will do stuff that makes your deallocation hard to do correctly. As a result you should either disable them or explicitly define all 4 compiler generated methods.

In your case the compiler is generates the following 4 methods:

matrix::matrix() { /* Do nothing or value initialize */ }
matrix::~matrxc(){ /* Do nothing */ }
matrix::matrix(matrix const& rhs)
    : a(rhs.a)
    , m(rhs.m)
    , n(rhs.n)
{}
matrix& matrix::operator+(matrix const& rhs)
{
    a = rhs.a;
    m = rhs.m;
    n = rhs.n;
    return *this;
} 

Now consider what the following code will do:

matrix  m1;
m1.m = 5;
m1.n = 5;
AllocMatrix(m1));

matrix  m2;
m2.m = 5;
m2.n = 5;
AllocMatrix(m2));

m2 = m1;  /* Simplified version of m3 = m1 + m2; */
          // The problem is that the a member is being copied from m1 to m2.
          // But the copy is a shallow copy. So now both m1 and m2 point at the same
          // piece of memory.

FreeMatrix(m2);  // Frees m2.a
FreeMatrix(m1);  // Whops. This Frees m1.a but it points at the same memory as m2.a
                 //        So now you have a double delete.

14: Separation of concerns.

This is an important technique to learn. It means a class should do one thing. Either it should contain the logic to perform some business logic or it should contain memory management (or other management stuff). It should not do both.

This means your matrix object should concentrate on the logic of doing matrix operations and delegate the memory management to another object type that is specifically designed for memory management. I will leave it at that as Charles Bailey covers that in detail in his answer.

雪落纷纷 2024-10-28 10:01:24

这个定义matrix temp;在命名空间范围内是一个巨大的警钟。您绝对不需要将其用作重载运算符的一部分。

您的 operator+operator* 重载不应返回引用,它们应按值返回一个matrix。这将消除在复杂表达式的多个槽中无形地重用 temp 的问题。这会导致观察结果出现意外值。

要使其正常工作,您需要确保您的矩阵类是可复制和可分配的。您要么需要使用更高级别的容器(例如 std::vector )来删除所有手动内存管理,要么需要为您的类提供使用定义的复制构造函数、复制赋值运算符和析构函数。

您的手动内存管理当前不正确。 FreeMatrix 删除 mat.a 成员,但不会释放 mat.a 元素指向的任何已分配数组。此外,检查 new 表达式是否导致 NULL 是徒劳的。 new 要么成功,要么抛出异常。

对我来说,我认为最简单的方法是为您的矩阵提供一个构造函数并使用 std::vector 实现它。

例如:

struct matrix
{
    matrix( int m, int n )
        : a( std::vector< std::vector<int> >( m, std::vector<int>( n, 0 ) );
    {
    }

    std::vector< std::vector<int> > a;
};

这样您的矩阵将是可复制和可分配的,您可以取消 AllocMatrix 和 FreeMatrix 并返回矩阵> 在适当的情况下按值。

当然,您需要将诸如 *(*(temp.a + i) + j) 之类的表达式更改为等效但更具可读性的 temp.a[i] [j] 在切换到向量之前。

This definition matrix temp; at namespace scope is a huge alarm bell. You absolutely shouldn't need to use this as a part of your overloaded operators.

Your operator+ and operator* overloads shouldn't return a reference, they should return a matrix by value. This would eliminate the problem where temp is being invisibly re-used in multiple slots in complex expressions. This is causing your unexpected values in the observed results.

To get this to work you need to ensure that your matrix class is copyable and assignable. You either need to use higher level containers such as std::vector to remove all of the manual memory management or you need to give your class a used-defined copy constructor, copy assignment operator and destructor.

Your manual memory management is currently incorrect. FreeMatrix deletes the mat.a member but it does not free any of the allocated arrays that the elements of mat.a pointed to. Also, checking whether a new expression resulted in NULL is futile. new will either succeed or throw an exception.

For me, I think that the simplest approach would be to give your matrix a constructor and implement it using std::vector.

E.g.:

struct matrix
{
    matrix( int m, int n )
        : a( std::vector< std::vector<int> >( m, std::vector<int>( n, 0 ) );
    {
    }

    std::vector< std::vector<int> > a;
};

This way your matrix will be copyable and assignable and you can do away with AllocMatrix and FreeMatrix and return matrix by value where appropriate.

You will, of course, need to change expressions such as *(*(temp.a + i) + j) to the equivalent, but much more readable, temp.a[i][j] before switching to vector.

怀念你的温柔 2024-10-28 10:01:24

A*A 有效但 C*C 无效?也许问题不在于您的代码,而在于矩阵的选择:第一个矩阵中的列数是否等于第二个矩阵中的行数?它必须用于矩阵乘法! (在 A*A 和 C*C 的情况下,这意味着这些矩阵必须是方阵,除非您使用隐式转置。)

如果这不是解决方案,请发布

  • 您的代码、
  • 您的矩阵、
  • 您的输出和
  • 错误消息/stackdump

A*A works but C*C does not? Maybe the problem is not in your code but in the choice of matrices: is the number of columns in the first matrix equal to the number of rows in the second matrix? It has to be for matrix multiplication! (In the case of A*A and C*C that would mean those matrices have to be square unless you use implicit transposition.)

If this is not the solution, please post

  • your code,
  • your matrices,
  • your output and
  • errormessages/stackdump
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文