为什么博尔德 到 费城 之间的距离是 7 英里?我的数学算错了吗?

发布于 2024-10-20 22:17:35 字数 1117 浏览 1 评论 0原文

这是费城的经纬度:http://www.rcn.montana.edu/resources/tools/坐标.aspx?nav=11&c=DD&md=24&mdt=国际(1924)-海福德(1909)&lat=39.947648&lath=N&lon=-75.151978&lonh=W

这是博尔德的纬度/经度:http://www.rcn.montana.edu/resources/tools /coordinates.aspx?nav=11&c=DD&md=24&mdt=国际(1924)-海福德(1909)&lat=40.0149856&lath=N&lon=-105.2705456&lonh=W

纬度和经度是正确的(您可以在 Google 地图中查看)。 UTM_east 和 UTM_north 对于两者来说也是正确的。

现在,将 UTM 代入距离公式:http://www.basic- math.com/distance-formula-calculator.html

您将得到以米为单位的距离,即 7 英里。

博尔德到底为何距费城 7 英里?

This is the lat/long for Philadelphia: http://www.rcn.montana.edu/resources/tools/coordinates.aspx?nav=11&c=DD&md=24&mdt=International(1924)-Hayford(1909)&lat=39.947648&lath=N&lon=-75.151978&lonh=W

This is the lat/long for Boulder: http://www.rcn.montana.edu/resources/tools/coordinates.aspx?nav=11&c=DD&md=24&mdt=International(1924)-Hayford(1909)&lat=40.0149856&lath=N&lon=-105.2705456&lonh=W

That lat and long are correct (You can check it in Google Maps). UTM_east and UTM_north are also correct for both.

Now, plug the UTMs into the distance formula here: http://www.basic-mathematics.com/distance-formula-calculator.html

And you will get distance in meters, which is 7 miles.

Why on earth is Boulder 7 miles away from Philadelphia?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

嗼ふ静 2024-10-27 22:17:35

您不能像这样插入 UTM 坐标,因为这两个城市不在同一个 UTM 区域

编辑:

并且,正如其他人所指出的,即使它们位于同一区域,您也不应该只对 UTM 坐标应用平面笛卡尔距离计算,因为 UTM 坐标基于圆柱投影。我只是指出导致您错误的最大因素是区域问题。

You can't just plug in the UTM coordinates like that because these two cities are not in the same UTM Zone.

EDIT:

And, as everyone else has pointed out, even if they were in the same zone, you shouldn't just apply a planar, cartesian distance calculation to the UTM coordinates because the UTM coordinates are based on a cylindrical projection. I was just pointing out that the largest contributing factor to your error was the zone issue.

屌丝范 2024-10-27 22:17:35

纬度和经度是球面坐标系,您使用的公式仅适用于平面。您需要使用haversine 公式

Latitude and Longitude are a spherical coordinate system and the formula you're using only works on a plane. You need to use the haversine formula.

在风中等你 2024-10-27 22:17:35

当我计算两点之间的距离(就像它们在标准笛卡尔平面上一样)时,我得到的距离为 29.9,这非常接近该工具的结果:

这两点之间的距离是29.900202340452488

首先,在球形物体上使用笛卡尔距离计算器不会给出好的结果。 :)(撇开地球不是球形不谈,但它也肯定不是平坦的。)

但是,让我们假设使用笛卡尔距离“足够好”,结果在这里以我们输入的任何单位进行测量。并且知道 1 度大约为 111 km,我们可以快速猜测博尔德和费城之间的距离大约为3318.9 km。鉴于 Google 两者之间的行车路线大约为 2841 公里,您可以立即明白为什么应用笛卡尔距离算法在球体上不起作用,以及为什么需要使用 haversine 公式

When I calculate the distance between the two points as if they were on a standard Cartesian plane, I get a distance of 29.9, which is really close to the tool's result:

The distance between these two points is 29.900202340452488

First, using a Cartesian distance calculator on a spherical object isn't going to give good results. :) (Leaving aside that the Earth isn't spherical, but it sure isn't flat either.)

BUT, let's assume for a second that using Cartesian distance is "good enough", the results here are measured in whatever units we input. And knowing that 1 degree is roughly 111 km, we get a quick guess that the distance between Boulder and Philadelphia is roughly 3318.9 km. Given that Google's driving directions between the two is roughly 2841 km, you can immediately see why applying Cartesian distance algorithms won't work on a sphere, and why you need to use the haversine formula.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文