使用 NLP 处理请假请求
我正在开发一个在线休假管理系统。该计划是集成自然语言处理(NLP)组件,以便系统可以决定是否应该接受请假请求。例如:
如果有人请求请假去参加葬礼,系统应该给予该请求较高的优先级。如果有人请求请假参加家庭葬礼,则相对于之前的葬礼请求,应获得更高的优先级。相反,如果有人请求休假进行简单的旅行/度假,系统应分配相对于其他休假请求较低的优先级。
我使用 .net
框架和 C#
编程语言。有人可以建议我如何:
- 集成 NLP 以理解休假请求并为每个请求分配优先级
- 接受高优先级休假请求并拒绝较低优先级休假请求
I'm developing an online leave management system. The plan is to integrate a Natural Language Processing (NLP) component such that the system can decide whether leave request should be accepted or not. For example:
If someone requests leave for a funeral, the system should give this request a high priority. If someone requests leave for a family funeral, it should get a higher priority relative to the previous funeral leave request. Conversely, if someone requests leave for a simple trip/holiday, the system should assign a lower priority relative to the other leave requests.
I'm using the .net
framework and C#
programming language. Could someone please suggest how I can:
- Integrate NLP to understand the leave requests and assign priority to each request
- Accept high priority leave requests and reject lower priority leave requests
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
有几种选择:
如果您有很多训练案例,那么您可以提取单词及其计数,并构建概率朴素贝叶斯模型来确定是接受还是拒绝请求。
如果你没有任何训练案例,那么你就必须建立一个基于规则的语义系统,这个系统在专家的手下应该是精确的,但需要大量的维护成本。
There are a couple of choices:
If you have a lot of training cases, then you can extract words and their counts, and build a probabilistic naive bayes model to determine whether to accept or reject a request.
If you don't have any training cases, then you have to build a rule-based semantic system, which should be precise under experts' hands, but need a lot maintenance cost.