如何导出模式
我想导出一个模式来告诉我门何时应该打开,何时应该关闭。例如,如果状态谱指的是前门,记录的数据显示第一天上午 9 点、中午 12 点和下午 6 点打开 1 分钟,第二天 9.30 打开 1.5 分钟,12.30,和6.30,以及第三天......类似地,那么应该导出一个模式,其中
前门打开的时间少于两分钟,例如每天晚上9点到10点之间,中午12点到1点之间,并且下午 6 点到 7 点之间(或类似时间)。
怎么做呢?有什么算法吗?这可以使用 weka 或其他机器学习程序来完成吗?
I would like to derive a pattern that tells me when the door should be open and when closed. For instance, if the status spectrum refers to the front door and recorded data show that the first day it is opened for 1 minute at 9am, at 12 noon and at 6 pm, and that the second day it is opened for 1.5 mins at 9.30, 12.30, and 6.30, and the third day... similarly, then there should be derive a pattern where
the front door is opened for less than, say, two minutes every day between 9 and 10, between 12 and 1 pm, and between 6 and 7 pm (or something similar).
How to do it? Any algorithms? Can this be done using weka or other machine learning programs?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
编辑:
您必须更好地定义它才能适用于任何机器学习算法。
对于监督学习,算法尝试预测“正确”的标签。
这里什么是正确的标签?错误预测的代价是什么?
或者,对于无监督学习,算法尝试创建有用的数据子集。这里什么是好的子集?
有自变量吗?
EDIT:
You have to define it better for any machine learning algorithm to be applicable.
For supervised learning, the algorithm tries to predict a "correct" label.
What is a correct label here? What is the cost of misprediction?
Alternatively, for unsupervised leaning, the algorithm tries to create useful subsets of the data. What is a good subset here?
Are there any independent variables?