快速比较图像
假设我有一组 10,000 张图像,我想根据相似性对其进行分类。许多人建议比较直方图是衡量相似性的一种廉价方法。例如,此线程建议每次比较使用 6 个直方图。
如果我将每个图像的直方图与集合中的所有其他图像进行比较,则总共需要 O(n^2) = 60,000*59,999/2 次比较,这非常慢。我怎样才能加快速度?
Say I have a set of 10,000 images that I'd like to classify based on similarity. A number of people have recommended that comparing histograms is a cheap way to measure similarity. This thread, for example, recommends using 6 histograms for each comparison.
If I compare each image's histogram with all other images in the set, that's O(n^2) = 60,000*59,999/2 comparisons in all, which is very slow. How can I speed this up?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
以某种方式散列直方图,制作散列的排序列表,找到相似的相邻值(在一定限制内),然后比较这些直方图
但是,制作直方图可能是缓慢的步骤
Hash the histogram in some way,make a sorted list of the hashes, find adjacent values that are similar (within some limit) then compare those histograms
However making the histograms is likely to be the slow step