是正六边形内部的一个点
我正在寻求有关最佳继续方式的建议。我试图找出给定点 A:(a, b) 是否在以中心 O:(x, y) 和外接圆直径定义的正六边形内。
对于这样一个简单的情况,使用光线投射或缠绕数来确定这一点似乎有点矫枉过正,我目前正在考虑寻找线 OA 的角度(与水平方向)和“标准化”的选项(可能不是正确的词)将其放入 6 个等边三角形之一,然后看看这个新点是否位于该三角形内。
我感觉我错过了一些简单的东西,并且有一种简单的方法(或者如果我真的很幸运,可以使用 Java API)来简单而有效地完成此操作。
感谢您的帮助。
编辑:六边形的方向使得其中一侧与水平面平齐。
I'm looking for advice on the best way to proceed. I'm trying to find whether a given point A:(a, b) is inside a regular hexagon, defined with center O:(x, y) and diameter of circumscribing circle.
It seems like overkill to use Ray-casting, or Winding-number to determine this, for such a simple case, and I'm currently looking at the option of finding the angle (from horizontal) of the line OA, and "normalising" (probably not the right word) it into one of the 6 equilateral triangles and seeing if this new point lies within this triangle.
I get the feeling I'm missing something simple, and there's an easy way (or if I'm really lucky, a Java API) to do this simply and efficiently.
Thanks for your help.
Edit: The hexagon is oriented such that one of the sides is flat with the horizontal.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(9)
您可以对六边形的每条边使用方程式;使用它们,您可以找出给定点是否与六边形中心位于同一半平面内。
例如,右上角有等式:
您代入该点的坐标,然后代入中心的坐标。如果结果具有相同的符号,则该点位于左下半平面中(因此它可能位于六边形内部)。
然后,您可以使用其他边的方程重复。
请注意,此算法适用于任何凸多边形。
You can use the equations for each of the sides of the hexagon; with them you can find out if a given point is in the same half-plane as the center of the hexagon.
For example, the top-right side has the equation:
You plug in this the coordinates of the point and then the coordinates of the center. If the results have the same sign, then the point is in the bottom-left half-plane (so it may be inside the hexagon).
You then repeat by using the equations of the others sides.
Note that this algorithm will work for any convex polygon.
如果将问题简化为检查单个象限中的
{x = 0, y = 0, d = 1}
,则可以变得非常简单。dy <= a
检查该点是否位于水平边缘下方。a*dx + 0.25*dy <= 0.5*a
检查该点是否位于倾斜右边缘的左侧。对于
{x0 = 0, y0 = 0, d = 1}
,角点将为(±0.25, ±0.43)
和(±0.5, 0.0 )
。If you reduce the problem down to checking
{x = 0, y = 0, d = 1}
in a single quadrant, you could make very simple.dy <= a
checks that the point is below the horizontal edge.a*dx + 0.25*dy <= 0.5*a
checks that the point is to the left of the sloped right edge.For
{x0 = 0, y0 = 0, d = 1}
, the corner points would be(±0.25, ±0.43)
and(±0.5, 0.0)
.这就是我一直在使用的:
px
和py
是x
和y
投影到坐标上的坐标系统更容易检查边界。This is what I have been using:
px
andpy
are the coordinates ofx
andy
projected onto a coordinate system where it is much easier to check the boundaries.看起来你知道一般的解决方案:“使用它似乎有点矫枉过正……”。所以这是我的想法:
计算从点到中心的距离,我们称之为
l
。然后您可以将其与内半径 (
r
) 和外接半径 (R
) 进行比较。如果l < r
则点位于六边形内部,如果l > R
然后在外面。如果 rl < R
那么你必须分别检查每一边,但由于R - r
非常小(十六进制边长的 13%),所以你可能必须进行复杂的计算很小。公式可以在这里找到:http://mathworld.wolfram.com/Hexagon.html
Looks like you know general solution: "It seems like overkill to use...". So here is my idea:
Calculate distance from point to center and let's call it
l
.Then you can compare it to inradius (
r
) and circumradius (R
). ifl < r
then point is inside hexagon, ifl > R
then outside. Ifr < l < R
then you have to check against each side respectively, but sinceR - r
is very small (13% of length of side of hex) so probability that you will have to do complex calculations is tiny.Formulas can be found here: http://mathworld.wolfram.com/Hexagon.html
我首先检查该点是否位于内切圆内部(您可以轻松计算内切圆半径)或外接圆外部(您已经有了)。
前者表示点已入,后者表示点已出。
从统计上看,大多数输入点应该允许您根据上述简单测试来决定。
对于最坏的情况(点位于内切圆和外接圆之间),我认为您可以找到距离该点最近的两个顶点,然后查看该点位于线段 V1V2 的哪一侧(内部或外部,如相对于 O 中心)。
特殊情况:点等于其中一个顶点 =>如果
我有一个更聪明的想法(或者如果我开始真正学习三角学),我会编辑答案让你知道:)
I would first check if the point is inside the inscribed circle (you can compute the inscribed circle radius easily) or outside the circumscribed circle (that you already have).
The first means the point is in, the latter means it's out.
Statistically, most of the input points should allow you to decide based on the above simple tests.
For the worst case scenario (point is in between the inscribed and circumscribed circles), I think you can find the two vertices that are closest to the point and then see on which side of the segment V1V2 the point is (inner or outer, as relative to the O center).
Special case: point is equal to one of the vertices => it's in.
If I'll have a more clever idea (or if I'll ever start to really learn trigonometry), I'll edit the answer to let you know :)
从点 P 中减去六边形中心的位置即可得到向量 V。然后,计算 V 与以下向量的点积,这些向量对应于三对相对的六边形边:
如果任何点积为其大小大于从六边形中心到其边缘之一的距离,则该点不在六边形内部。
作为参考,向量 [a,b] 和 [c,d] 的点积为 a*c+b*d。
上面的角度“30”的单位是度;)
Subtract the position of the center of the hexagon from your point P to get a vector V. Then, take the dot product of V with the following vectors, which correspond to the three pairs of opposing hexagon edges:
If any of the dot products are greater in magnitude than the distance from the center of the hexagon to one of its edges, then the point is not inside the hexagon.
For reference, the dot product of vectors [a,b] and [c,d] is a*c+b*d.
The angle "30" above is in degrees ;)
您想要的是找出一个点是否位于凸多边形内部的代码,六边形是其中的一个特殊情况。
这是一个很好的答案:
https://stackoverflow.com/a/34689268/516188
我确实修改了该函数以供我使用,我找到了我的版本更清晰。这是打字稿(你只要眯着眼睛看,它就是 javascript):
What you want is the code to find out whether a point is inside a convex polygon, an hexagon being a particular case of that.
Here's a good answer:
https://stackoverflow.com/a/34689268/516188
I did modify that function for my use, I find my version clearer. It's typescript (you just squint and it's javascript):
通过将晶格表示为与平面 x+y+z=0 相交的立方体晶格,可以很好地推广使用齐次坐标的六角晶格,请参阅https://www.redblobgames.com/grids/hexagons/#coordinates
There's a nice generalization to a hex lattice using homogeneous coordinates, by representing the lattice as the cube-lattice intersected with the plane x+y+z=0, see https://www.redblobgames.com/grids/hexagons/#coordinates
好吧,现在是 2024 年了,这个问题仍然严重缺乏简单而完整的代码和正确的解释。这是 TypeScript,但在任何语言中都是一样的。
(px, py)
是要检查的点的坐标(cx, cy)
是六边形中心的坐标radius
是从中心到六边形任意顶点的距离解释
这里我们假设 Y 轴向上:点 (1,1) 位于点 (0,0) 的右上角。但是,由于它是正六边形,因此无论轴方向如何,代码都可以工作。
我们基本上要检查六边形的每一侧,要检查的点和六边形的中心是否在同一侧。
首先,为了方便起见,我们转换点坐标:
从现在开始,
(dx, dy)
是要检查的点,(0,0)
是六边形的中心,六边形的半径为1
。这使得后续方程更简单。顶部和底部
这是最容易检查的,因为它们是水平线。顶边的 Y 坐标为
sqrt(3) / 2
,底边的 Y 坐标与之相反,为-sqrt(3) / 2
。所以我们检查
dy < sqrt3 / 2 和 dy > -sqrt3 / 2 表示该点位于这两条线之间。
对角边
有 4 个对角边,其方程为(对于中心
(0,0)
和半径1
的六边形):y = sqrt(3) * x + sqrt(3)
y = -sqrt(3) * x + sqrt(3)
y = sqrt(3) * x - sqrt(3)
y = -sqrt(3) * x - sqrt(3)
了解两个点是否在同一个点上一条线的一侧,我们将它们的坐标代入线方程中,然后检查方程的哪一侧大于另一侧。如果两个点的同侧较大,则意味着它们在同一侧。
让我们以左上角为例。我们想要检查点
(0.5, 0.5)
是否与中心在同一侧。所以我们插入坐标:(0.5, 0.5)
:y = 0.5
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0.5 + sqrt(3) ≈ 0.866
(0, 0)
:y = 0
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0 + sqrt(3) ≈ 1.732
在这两种情况下,右侧都大于左侧,因此我们可以得出结论,点
(0, 0)
和(0.5, 0.5)
都是在六边形右上角的同一侧。如果我们尝试使用点
(1, 1)
:(1, 1)
:y = 1
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 1 + sqrt(3) = 0
(0, 0)
:y = 0
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0 + sqrt(3) ≈ 1.732
每个点都有不同的一侧较大,因此点
(1, 1)
与六边形的中心不在同一侧,因此它位于六边形之外。总而言之,这可以归结为评估:
dy > -sqrt(3) * dx + sqrt(3) === cy > -sqrt(3) * cx + sqrt(3)
。由于中心
(0, 0)
的值始终相同,因此我们可以简化方程,从而得到四个边:sqrt(3) * dx + sqrt(3 )> dy
sqrt(3) * dx - sqrt(3)
dy
-sqrt(3) * dx + sqrt(3) > dy
-sqrt(3) * dx - sqrt(3) < dy
就是这样。如果六个边中的每一个都通过检查,则该点位于六边形内部。不然就在外面了。
Alright, it is 2024 and this question is still seriously lacking a simple yet complete code with a proper explanation. This is TypeScript, but works the same in any language.
(px, py)
are the coordinates of the point to check(cx, cy)
are the coordinates of the center of the hexagonradius
is the distance from the center to any vertex of the hexagonExplanation
Here we assume that the Y axis goes up: point (1,1) is top-right of point (0,0). However since it's a regular hexagon, the code works regardless of axis orientation.
We basically want to check, for each side of the hexagon, if both the point to check and the center of the hexagon are on the same side.
First, we convert the point coordinates for convenience:
From now on,
(dx, dy)
is the point to check,(0,0)
is the center of the hexagon, and the radius of the hexagon is1
. This makes followup equations simpler.Top and bottom sides
These are the simplest to check because they are horizontal lines. The Y coordinate of the top side is
sqrt(3) / 2
, and the Y coordinate of the bottom side is the opposite,-sqrt(3) / 2
.So we check with
dy < sqrt3 / 2
anddy > -sqrt3 / 2
that the point is between these two lines.Diagonal sides
There are 4 diagonal sides, for which the equations are (for an hexagon of center
(0,0)
and radius1
):y = sqrt(3) * x + sqrt(3)
y = -sqrt(3) * x + sqrt(3)
y = sqrt(3) * x - sqrt(3)
y = -sqrt(3) * x - sqrt(3)
To know if two points are on the same side of a line, we plug their coordinates in the line equation and we check which side of the equation is greater that the other. If the same side is greater for both points, it means they are on the same side.
Let's have an example with the top-left side. We want to check if the point
(0.5, 0.5)
is on the same side as the center. So we plug the coordinates:(0.5, 0.5)
:y = 0.5
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0.5 + sqrt(3) ≈ 0.866
(0, 0)
:y = 0
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0 + sqrt(3) ≈ 1.732
In both cases, the right side is greater than the left side thus we can conclude that both points
(0, 0)
and(0.5, 0.5)
are on the same side of the top-right side of the hexagon.If we try with the point
(1, 1)
:(1, 1)
:y = 1
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 1 + sqrt(3) = 0
(0, 0)
:y = 0
-sqrt(3) * x + sqrt(3) = -sqrt(3) * 0 + sqrt(3) ≈ 1.732
A different side is greater for each point, thus the point
(1, 1)
is not on the same side as the center of the hexagon, thus it is is outside the hexagon.All in all this boils down to evaluating:
dy > -sqrt(3) * dx + sqrt(3) === cy > -sqrt(3) * cx + sqrt(3)
.Because the values are always the same for the center
(0, 0)
, we can simplify the equations, which gives us for the four sides:sqrt(3) * dx + sqrt(3) > dy
sqrt(3) * dx - sqrt(3) < dy
-sqrt(3) * dx + sqrt(3) > dy
-sqrt(3) * dx - sqrt(3) < dy
And that's it. If the check passes for each of the six sides, the point is inside the hexagon. Otherwise it's outside.