在方差分析之前进行缩放?
我想进行方差分析来识别差异表达的基因。在寻找差异表达基因之前,我应该使用分位数归一化或中值绝对偏差来缩放数据,还是应该直接对通过 RMA 获得的数据应用方差分析?
预先非常感谢
I want to perform an anova analysis for identifying differentially expressed genes. Should I scale the data using quantile normalization or median absolute deviation before looking for differentially expressed genes or should I apply anova directly on data obtained through RMA?
Thanks a lot in advance
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
您可以在 RMA 后应用方差分析,因为它包括背景调整、汇总和分位数归一化步骤(请参阅此处)。对于非 Affy 数据,可以在方差分析之前使用 Illumina 数据的对数变换/分位数归一化或 VST(方差稳定变换)/RSN(鲁棒样条归一化)等方法。
正如已经指出的,这个问题的最佳位置是 BioStar。
顺便说一句,您还需要在 RMA 之后和 ANOVA 之前对数据进行一些过滤,以删除低方差的探针集。如果您使用 R 工作,您将需要查看 基因过滤器。
You can apply ANOVA after RMA, since it includes background adjustment, summarisation and quantile normalisation steps (see here). For non-Affy data, something along the lines of log transformation/quantile normalisation or VST (variance stablilising transformation)/RSN (robust spline normalisation) for Illumina data could be used prior to ANOVA.
Best place for this question, as already pointed out is BioStar.
By the way you will also want to do some filtering on the data after RMA and prior to ANOVA to remove probesets of low variance. If you're working in R you will want to look at genefilter.
始终、始终标准化,否则您的结果根本无法比较。使用的标准化技术很大程度上取决于您所使用的微阵列技术。
要获得更深入的答案,您应该尝试 Biostar Stack Exchange 网站。
Always, always normalise, your results are simply not comparable otherwise. The normaisation technique to use depends largely on the microarray technology you are using.
For a more in-depth answer, you should try the Biostar Stack Exchange site.