所有点之间的最短路径问题,弗洛伊德·沃歇尔

发布于 2024-10-20 00:18:07 字数 3721 浏览 3 评论 0原文

先生。罗文计划徒步旅行 巴黎的。然而,由于他是一个 小懒,他想拿 遍历所有路径的最短路径 他想去的地方。他计划 乘坐巴士到第一个地点 又一个从最后一个地方回来, 所以他可以自由选择首发 和结束地点。你能帮助他吗?

输入

第一行输入包含 参观地点的数量(n)。然后, 在接下来的n行中,你会发现 每个游览地点的坐标。 这是一个例子:

<块引用>

3

132 73

49 86

72111

输出

对于每个测试用例,您的程序 应该输出一行包含 罗文先生必须的最小距离 步行参观所有地方假设 从一个地方到一个地方的步行距离 另一个是欧几里德距离。这 算法应该输出一个数字 恰好为 3 的定点表示法 小数点右边的数字 点且无前导空格。有 最多可游览 12 个地点。示例

输入示例:

<块引用>

3

132 73

49 86

72111

示例输出:

<块引用>

104.992

我一直在为我的家庭作业编写这段代码,但我无法让它工作,我开始想知道这是否是最好的方法..

问题是 floyd-warshall 函数,它对 float **path 结构没有任何作用..不知道为什么.. floydwarshall(path, n, next); 之前和之后的路径是相同的

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>

/*Implementing of http://en.wikipedia.org/wiki/Floyd–Warshall_algorithm*/


struct point {
    float x;
    float y;
};


float cost(struct point* a, struct point* b) {

    return sqrt(pow((*a).x - (*b).x, 2) + pow((*a).y - (*b).y, 2));

}


float** f2dmalloc(int n, int m){

    int i;
    float **ptr;

    ptr = malloc(n * sizeof(float *));
    for (i = 0; i < n; i++) {
        ptr[i] = calloc(m, sizeof(float));
    }

    return ptr;

}



void floydwarshall(float **path, int n, float ** next){
    int i, j, k;
    float a, b;
    for (k = 0; k < n; k++) {
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                a = path[i][j];
                b = path[i][k] + path[k][j];
                path[i][j] = ((a) < (b) ? a : b);
                next[i][j] = k;

            }
        }
    }

}

int main (int argc, const char* argv[])
{



    int i;
    int j;
    int n;

    float temp;
    float mininum;

    scanf("%d", &n);

    /*
    A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path
    from i to j using intermediate vertices (1..k−1).  Each path[i][j] is initialized to
    cost(i,j).
    */
    float ** path;
    float ** next;
    struct point* points;

    path = f2dmalloc(n, n);
    next = f2dmalloc(n, n);

    points = malloc(n * sizeof(struct point));

    for (i = 0; i < n; i++){
        scanf("%f %f", &(points[i].x), &(points[i].y));
    }


    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            path[i][j] = cost(&points[i], &points[j]);
        }
    }


    temp = 0;
    for (i = 0; i < n; i++) {
        mininum = FLT_MAX;
        for (j = 0; j < n; j++) {
            printf("%.3f\t", path[i][j]);
            if (path[i][j] < mininum && path[i][j] != 0){
                mininum = path[i][j];
            }

        }
        printf("\tminimum - %.3f\n", mininum);
        temp += mininum;
    }

    floydwarshall(path, n, next);


    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            printf("%.3f\t", next[i][j]);

        }
        printf("\n");
    }

    /*
    temp = 0;
    for (i = 0; i < n; i++) {
        mininum = FLT_MAX;
        for (j = 0; j < n; j++) {
            printf("%.3f\t", path[i][j]);
            if (path[i][j] < mininum && path[i][j] != 0){
                mininum = path[i][j];
            }

        }
            printf("\tminimum - %.3f\n", mininum);
        temp += mininum;
    }

    printf("%.3f\n", temp);

     */

    return 0;
}

Mr. Rowan plans to make a walking tour
of Paris. However, since he is a
little lazy, he wants to take the
shortest path that goes through all
the places he wants to visit. He plans
to take a bus to the first place and
another one back from the last place,
so he is free to choose the starting
and ending places. Can you help him?

Input

The first line of input contains the
number of places to visit (n). Then,
in the following n lines, you find the
coordinates of each place to visit.
Here is an example:

3

132 73

49 86

72 111

Output

For each test case, your program
should output one line containing the
minimum distance that Mr. Rowan must
walk to visit all places assuming that
the walking distance from one place to
another is the Euclidean distance. The
algorithm should output a number in
fixed-point notation with exactly 3
digits to the right of the decimal
point and no leading space. There are
at most 12 places to visit. Example

Example input:

3

132 73

49 86

72 111

Example output:

104.992

i've been working on this code, for my homework, but i cant make it work, im start wondering if this is the best approach..

the problem is the floyd-warshall function, that does nothing on float **path structure.. dont know why.. path is the same before and after the floydwarshall(path, n, next);

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>

/*Implementing of http://en.wikipedia.org/wiki/Floyd–Warshall_algorithm*/


struct point {
    float x;
    float y;
};


float cost(struct point* a, struct point* b) {

    return sqrt(pow((*a).x - (*b).x, 2) + pow((*a).y - (*b).y, 2));

}


float** f2dmalloc(int n, int m){

    int i;
    float **ptr;

    ptr = malloc(n * sizeof(float *));
    for (i = 0; i < n; i++) {
        ptr[i] = calloc(m, sizeof(float));
    }

    return ptr;

}



void floydwarshall(float **path, int n, float ** next){
    int i, j, k;
    float a, b;
    for (k = 0; k < n; k++) {
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                a = path[i][j];
                b = path[i][k] + path[k][j];
                path[i][j] = ((a) < (b) ? a : b);
                next[i][j] = k;

            }
        }
    }

}

int main (int argc, const char* argv[])
{



    int i;
    int j;
    int n;

    float temp;
    float mininum;

    scanf("%d", &n);

    /*
    A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path
    from i to j using intermediate vertices (1..k−1).  Each path[i][j] is initialized to
    cost(i,j).
    */
    float ** path;
    float ** next;
    struct point* points;

    path = f2dmalloc(n, n);
    next = f2dmalloc(n, n);

    points = malloc(n * sizeof(struct point));

    for (i = 0; i < n; i++){
        scanf("%f %f", &(points[i].x), &(points[i].y));
    }


    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            path[i][j] = cost(&points[i], &points[j]);
        }
    }


    temp = 0;
    for (i = 0; i < n; i++) {
        mininum = FLT_MAX;
        for (j = 0; j < n; j++) {
            printf("%.3f\t", path[i][j]);
            if (path[i][j] < mininum && path[i][j] != 0){
                mininum = path[i][j];
            }

        }
        printf("\tminimum - %.3f\n", mininum);
        temp += mininum;
    }

    floydwarshall(path, n, next);


    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            printf("%.3f\t", next[i][j]);

        }
        printf("\n");
    }

    /*
    temp = 0;
    for (i = 0; i < n; i++) {
        mininum = FLT_MAX;
        for (j = 0; j < n; j++) {
            printf("%.3f\t", path[i][j]);
            if (path[i][j] < mininum && path[i][j] != 0){
                mininum = path[i][j];
            }

        }
            printf("\tminimum - %.3f\n", mininum);
        temp += mininum;
    }

    printf("%.3f\n", temp);

     */

    return 0;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

桃气十足 2024-10-27 00:18:07

Floyd-Warshall 解决了这个问题:对于每对点,找到连接它们的最短路径。 (它需要连接这两点。它不需要做任何其他事情。如果产生更短的路径,它只会访问其他点。)

在目前的情况下,因为您总是可以直接从任何点到任何其他点,最短路径始终是直接路径:只需从 A 到 B。(这就是为什么调用 floydwarshall 不会改变任何内容。)

但是您要解决的问题似乎是旅行商问题:找到一条访问所有点且尽可能短的路径。

这些是完全不同的问题,您需要做一些完全不同的事情来解决您被要求解决的问题。

Floyd-Warshall solves the problem: For each pair of points, find the shortest path joining them. (It needs to join these two points. It doesn't need to do anything else. It will only visit other points if that produces a shorter path.)

In the present case, since you can always go directly from any point to any other, the shortest path is always the direct one: just go from A to B. (Which is why calling floydwarshall doesn't change anything.)

But the problem you're trying to solve seems to be the travelling salesman problem: find a path that visits all your points and is as short as possible.

These are entirely different problems, and you'll need to do something quite different to solve the problem you've been asked to solve.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文