帮助了解 Big Omega 证明吗?
我在解决证明时遇到困难。其中 t(n) <= cn^1.6,c 为常数。一般来说,Big Omega 与 Big O 相反,它是最好的情况场景并寻找下界。因此存在 ac 和 n0 使得 n >= n0。但我不确定如何将其应用于证明以及如何操纵方程中的常数来找到 c 和 n0 并证明 t(n) 是 Omega(n^1.6)。
t(n) = (n-3logn)^1.6 + 5n^1.5 + 7 是 Omega(n^1.6)
任何人都可以提供有关如何执行此类型的一些见解的问题?提前致谢!
另外,所以我没有收到来自我下面的评论的任何批评,这不是一个家庭作业问题,而是从一组练习中获取的示例,以便有人更容易解释此类问题背后的一般概念。
I am having trouble solving a proof. Where t(n) <= cn^1.6, c being a constant. In general, Big Omega is the opposite of Big O in that it is the best case scenerio and looks for the lower bound. So there exists a c and and n0 such that n >= n0. But I am uncertain how to apply this to the proof and how to manipulate the constants in the equation to find c and n0 and to prove that t(n) is Omega(n^1.6).
t(n) = (n-3logn)^1.6 + 5n^1.5 + 7 is Omega(n^1.6)
Could anyone offer some insight on how to do this type of problem? Thanks in advance!
Also so I dont get any criticism as was received from the comment below me, this is not a homework problem but an example taken from a set of exercises so that it is easier for someone to explain the general concept behind this type of problem.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
Big-Omega 的定义: f(n)=Omega(g(n)) iff 常数 C 和 K 存在,使得对于所有 n > 。 K,f(n)> C * g(n)
换句话说,您需要能够这样说:“我选择 C = 5,现在对于所有 n > 1000,f(n) > 5 * g(n),所以就在那里。”
现在让我们看看您的问题。
除以 n^1.6
那么让我们一一看看这三个术语(当然,需要更正式的证明,但这些很简单)。
所以我们看到对于任何 n > 2、C< 1 + 5 + 1 = 7
现在你可以说“我选择 C=7,并且对于任何 n > 2,C*n^1.6 < ...”
Definition of Big-Omega: f(n)=Omega(g(n)) iff constants C and K exist such that for all n > K, f(n) > C * g(n)
In other words, you need to be able to say something like this: "I choose C = 5, and now for all n > 1000, f(n) > 5 * g(n), so there."
Let's look at your problem now.
Divide by n^1.6
So let's look at these three terms one by one (more formal proof would be needed, of course, but these are straightforward).
So we see that for any n > 2, C < 1 + 5 + 1 = 7
Now you get to say "I choose C=7, and for any n > 2, C*n^1.6 < ..."