帮助了解 Big Omega 证明吗?

发布于 2024-10-19 15:37:29 字数 387 浏览 2 评论 0原文

我在解决证明时遇到困难。其中 t(n) <= cn^1.6,c 为常数。一般来说,Big Omega 与 Big O 相反,它是最好的情况场景并寻找下界。因此存在 ac 和 n0 使得 n >= n0。但我不确定如何将其应用于证明以及如何操纵方程中的常数来找到 c 和 n0 并证明 t(n) 是 Omega(n^1.6)。

t(n) = (n-3logn)^1.6 + 5n^1.5 + 7Omega(n^1.6)

任何人都可以提供有关如何执行此类型的一些见解的问题?提前致谢!

另外,所以我没有收到来自我下面的评论的任何批评,这不是一个家庭作业问题,而是从一组练习中获取的示例,以便有人更容易解释此类问题背后的一般概念。

I am having trouble solving a proof. Where t(n) <= cn^1.6, c being a constant. In general, Big Omega is the opposite of Big O in that it is the best case scenerio and looks for the lower bound. So there exists a c and and n0 such that n >= n0. But I am uncertain how to apply this to the proof and how to manipulate the constants in the equation to find c and n0 and to prove that t(n) is Omega(n^1.6).

t(n) = (n-3logn)^1.6 + 5n^1.5 + 7 is Omega(n^1.6)

Could anyone offer some insight on how to do this type of problem? Thanks in advance!

Also so I dont get any criticism as was received from the comment below me, this is not a homework problem but an example taken from a set of exercises so that it is easier for someone to explain the general concept behind this type of problem.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

手心的海 2024-10-26 15:37:29

Big-Omega 的定义: f(n)=Omega(g(n)) iff 常数 C 和 K 存在,使得对于所有 n > 。 K,f(n)> C * g(n)

换句话说,您需要能够这样说:“我选择 C ​​= 5,现在对于所有 n > 1000,f(n) > 5 * g(n),所以就在那里。”

现在让我们看看您的问题。

t(n) = (n-3logn)^1.6 + 5n^1.5 + 7 is Omega(n^1.6)

C * n^1.6 < (n-3logn)^1.6 + 5n^1.5 + 7

除以 n^1.6

C < ((n-3logn)/n)^1.6 + 5n^-0.1 + 7/n^1.6
C < (1 - 3logn/n)^1.6 + 5n^-0.1 + 7/n^1.6

那么让我们一一看看这三个术语(当然,需要更正式的证明,但这些很简单)。

1. (1 - 3logn/n)^1.6 = (1 - 0.smth)^1.6 = (0.smth)^1.6 < 1 for n > 2
2. 5n^-0.1 = 5/n^0.1 = 5/smth greater than 1 < 5 for n > 2
3. 7/n^1.6 = 7/smth large < 1 for n > 2

所以我们看到对于任何 n > 2、C< 1 + 5 + 1 = 7

现在你可以说“我选择 C=7,并且对于任何 n > 2,C*n^1.6 < ...”

Definition of Big-Omega: f(n)=Omega(g(n)) iff constants C and K exist such that for all n > K, f(n) > C * g(n)

In other words, you need to be able to say something like this: "I choose C = 5, and now for all n > 1000, f(n) > 5 * g(n), so there."

Let's look at your problem now.

t(n) = (n-3logn)^1.6 + 5n^1.5 + 7 is Omega(n^1.6)

C * n^1.6 < (n-3logn)^1.6 + 5n^1.5 + 7

Divide by n^1.6

C < ((n-3logn)/n)^1.6 + 5n^-0.1 + 7/n^1.6
C < (1 - 3logn/n)^1.6 + 5n^-0.1 + 7/n^1.6

So let's look at these three terms one by one (more formal proof would be needed, of course, but these are straightforward).

1. (1 - 3logn/n)^1.6 = (1 - 0.smth)^1.6 = (0.smth)^1.6 < 1 for n > 2
2. 5n^-0.1 = 5/n^0.1 = 5/smth greater than 1 < 5 for n > 2
3. 7/n^1.6 = 7/smth large < 1 for n > 2

So we see that for any n > 2, C < 1 + 5 + 1 = 7

Now you get to say "I choose C=7, and for any n > 2, C*n^1.6 < ..."

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文