具有非平凡状态和转换的图灵机

发布于 2024-10-19 15:17:24 字数 100 浏览 2 评论 0原文

请给我一些关于如何进行此

绘制图灵机(使用 Sipser 表示法)的想法,该图灵机具有至少 4 个非平凡(即,非拒绝)状态和至少 6 个非平凡(即,不是到拒绝状态)转换。

Please give me some idea as to how to go about this

Draw a Turing machine (using Sipser notation) having at least 4 nontrivial (i.e., nonrejecting) states and at least six nontrivial (i.e., not to the rejecting state) transitions.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

情深缘浅 2024-10-26 15:17:24

图灵机具有:

  • 有限数量的状态,其中一个接受,一个拒绝。该任务显然需要五种状态(四种不拒绝(其中一种必须接受)和一种拒绝)。州通常绘制为圆圈,每个圆圈内都有一个标签(州名称)。其中一个状态是起始状态;它标有指向它的箭头。
  • 有限的输入字母表。 {0, 1} 或 {a, b} 是典型的选择。
  • 有限的磁带字母表,其中包括特殊的空白符号、输入字母表中的所有符号,以及可能更多的符号(但这不是必需的)。
  • 转换函数,为状态和磁带符号的每个组合分配状态、磁带符号和方向。方向可以是L(左)或R(右)。转换被绘制为从一种状态到另一种状态的箭头(或者可能是从一种状态返回到自身的圆形箭头),并且该箭头标有两个磁带符号以及 L 或 R。显然,您需要六个这样的箭头。

该机器还有一个无限磁带,被分成多个单元。在每个单元格中,可以有一个来自磁带字母表的符号。最初位于磁带上的符号称为机器的输入。机器有一个读取头,始终位于其中一个单元上方。假设您有一个从状态 A 到状态 B 的转换箭头,其上带有符号 a、b 和 R。这意味着:“如果机器处于状态 A 并且磁头下方的符号是 a,那么我们应该用 b 替换该符号,进入状态 B,并将读取头向右移动一个单元。”

A Turing machine has:

  • A finite number of states, of which one is accepting and one is rejecting. The task apparently requires five states (four nonrejecting (of which one must be accepting) and one rejecting). The states are usually drawn as circles, with a label (the state name) inside each. One of the states is the starting state; it is marked with an arrow pointing at it.
  • A finite input alphabet. {0, 1} or {a, b} are typical choices.
  • A finite tape alphabet, which includes a special blank symbol, all symbols from the input alphabet, and possibly more symbols (but this is not required).
  • A transition function which assigns a state, a tape symbol and a direction to each combination of a state and a tape symbol. The direction can be L (left) or R (right). A transition is drawn as an arrow from one state to another (or possibly a circular arrow from a state back to itself), and the arrow is labelled with two tape symbols and either L or R. Apparently, you need six such arrows.

The machine also has an infinite tape that is divided into cells. In each cell, there can be a symbol from the tape alphabet. The symbols that initially are on the tape are called the input to the machine. The machine has a read head that is always located over one of the cells. Let's say you have a transition arrow from state A to state B, with the symbols a, b, and R on it. That means: "If the machine is in state A and the symbol under the tape head is a, then we should replace that symbol with b, go to state B, and move the read head one cell to the right."

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文