具有非平凡状态和转换的图灵机
请给我一些关于如何进行此
绘制图灵机(使用 Sipser 表示法)的想法,该图灵机具有至少 4 个非平凡(即,非拒绝)状态和至少 6 个非平凡(即,不是到拒绝状态)转换。
Please give me some idea as to how to go about this
Draw a Turing machine (using Sipser notation) having at least 4 nontrivial (i.e., nonrejecting) states and at least six nontrivial (i.e., not to the rejecting state) transitions.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
图灵机具有:
该机器还有一个无限磁带,被分成多个单元。在每个单元格中,可以有一个来自磁带字母表的符号。最初位于磁带上的符号称为机器的输入。机器有一个读取头,始终位于其中一个单元上方。假设您有一个从状态 A 到状态 B 的转换箭头,其上带有符号 a、b 和 R。这意味着:“如果机器处于状态 A 并且磁头下方的符号是 a,那么我们应该用 b 替换该符号,进入状态 B,并将读取头向右移动一个单元。”
A Turing machine has:
The machine also has an infinite tape that is divided into cells. In each cell, there can be a symbol from the tape alphabet. The symbols that initially are on the tape are called the input to the machine. The machine has a read head that is always located over one of the cells. Let's say you have a transition arrow from state A to state B, with the symbols a, b, and R on it. That means: "If the machine is in state A and the symbol under the tape head is a, then we should replace that symbol with b, go to state B, and move the read head one cell to the right."