Python/Scipy 2D 插值(非均匀数据)

发布于 2024-10-19 11:58:49 字数 3756 浏览 2 评论 0原文

这是我上一篇文章的后续问题:Python/Scipy 插值 (map_coordinates)

假设我想在二维矩形区域上进行插值。我的变量“z”包含如下所示的数据。每列都具有恒定值,但是,数组的每一行可能具有不同的值,如下面的注释所示。

from scipy import interpolate
from numpy import array
import numpy as np
#                                               # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309],   # 0.0000, 0.0000, 0.0000, 0.0000
           [-2.2818,-2.2818,-0.9309,-0.9309],   # 0.2620, 0.2784, 0.3379, 0.3526
           [-1.4891,-1.4891,-0.5531,-0.5531],   # 0.6121, 0.6351, 0.7118, 0.7309
           [-1.4891,-1.4891,-0.5531,-0.5531]])  # 1.0000, 1.0000, 1.0000, 1.0000
# Rows, Columns = z.shape

cols = array([0.0000, 0.1750, 0.8170, 1.0000])
rows = array([0.0000, 0.2620, 0.6121, 1.0000])

sp = interpolate.RectBivariateSpline(rows, cols, z, kx=1, ky=1, s=0)

xi = np.array([0.00000, 0.26200, 0.27840, 0.33790, 0.35260, 0.61210, 0.63510,
               0.71180, 0.73090, 1.00000], dtype=np.float)
yi = np.array([0.000, 0.167, 0.815, 1.000], dtype=np.float)
print sp(xi, yi)

作为可视化这一点的另一种方式,我知道的值数组是:

rows = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526,
                      0.6121, 0.6351, 0.7118, 0.7309, 1.0000])
#          # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309],   # 0.0000
           [-2.2818,      ?,      ?,      ?],   # 0.2620,
           [      ?,-2.2818,      ?,      ?],   # 0.2784
           [      ?,      ?,-0.9309,      ?],   # 0.3379
           [      ?      ,?,      ?,-0.9309],   # 0.3526
           [-1.4891,      ?,      ?,      ?],   # 0.6121
           [      ?,-1.4891,      ?,      ?],   # 0.6351
           [      ?,      ?,-0.5531,      ?],   # 0.7118
           [      ?,      ?,      ?,-0.5531],   # 0.7309
           [-1.4891,-1.4891,-0.5531,-0.5531]])  # 1.0000

我不知道“?”值,并且应该对它们进行插值。我尝试用 None 替换它们,但所有结果都得到“nan”。

编辑:

我想我需要使用“griddata”或“interp2”。 griddata 似乎产生了我期望的结果,但 'interp2' 没有。

from scipy import interpolate
from numpy import array
import numpy as np

z = array([[-2.2818,-2.2818,-0.9309,-0.9309],
           [-2.2818,-2.2818,-0.9309,-0.9309],
           [-1.4891,-1.4891,-0.5531,-0.5531],
           [-1.4891,-1.4891,-0.5531,-0.5531]])

rows = array([0.0000, 0.0000, 0.0000, 0.0000,
              0.2620, 0.2784, 0.3379, 0.3526,
              0.6121, 0.6351, 0.7118, 0.7309,
              1.0000, 1.0000, 1.0000, 1.0000])

cols = array([0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000])

xi = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526, 0.6121, 0.6351, 0.7118,
               0.7309, 1.0000], dtype=np.float)
yi = array([0.000, 0.175, 0.818, 1.000], dtype=np.float)

GD = interpolate.griddata((rows, cols), z.ravel(),
                          (xi[None,:], yi[:,None]), method='linear')
I2 = interpolate.interp2d(rows, cols, z, kind='linear')

print GD.reshape(4, 10).T
print '\n'
print I2(xi, yi).reshape(4, 10).T

import matplotlib.pyplot as plt
import numpy.ma as ma

plt.figure()
GD = interpolate.griddata((rows.ravel(), cols.ravel()), z.ravel(),
                          (xi[None,:], yi[:,None]), method='linear')
CS = plt.contour(xi,yi,GD,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,GD,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)

plt.figure()
I2 = I2(xi, yi)
CS = plt.contour(xi,yi,I2,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,I2,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)
plt.show()

This is a follow-up question to my previous post: Python/Scipy Interpolation (map_coordinates)

Let's say I want to interpolate over a 2d rectangular area. My variable 'z' contains the data as shown below. Each column is at a constant value, however, each row of the array may be at a different value as shown in the comment below.

from scipy import interpolate
from numpy import array
import numpy as np
#                                               # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309],   # 0.0000, 0.0000, 0.0000, 0.0000
           [-2.2818,-2.2818,-0.9309,-0.9309],   # 0.2620, 0.2784, 0.3379, 0.3526
           [-1.4891,-1.4891,-0.5531,-0.5531],   # 0.6121, 0.6351, 0.7118, 0.7309
           [-1.4891,-1.4891,-0.5531,-0.5531]])  # 1.0000, 1.0000, 1.0000, 1.0000
# Rows, Columns = z.shape

cols = array([0.0000, 0.1750, 0.8170, 1.0000])
rows = array([0.0000, 0.2620, 0.6121, 1.0000])

sp = interpolate.RectBivariateSpline(rows, cols, z, kx=1, ky=1, s=0)

xi = np.array([0.00000, 0.26200, 0.27840, 0.33790, 0.35260, 0.61210, 0.63510,
               0.71180, 0.73090, 1.00000], dtype=np.float)
yi = np.array([0.000, 0.167, 0.815, 1.000], dtype=np.float)
print sp(xi, yi)

As another way of visualizing this, the array of values I KNOW would be:

rows = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526,
                      0.6121, 0.6351, 0.7118, 0.7309, 1.0000])
#          # 0.0000, 0.1750, 0.8170, 1.0000
z = array([[-2.2818,-2.2818,-0.9309,-0.9309],   # 0.0000
           [-2.2818,      ?,      ?,      ?],   # 0.2620,
           [      ?,-2.2818,      ?,      ?],   # 0.2784
           [      ?,      ?,-0.9309,      ?],   # 0.3379
           [      ?      ,?,      ?,-0.9309],   # 0.3526
           [-1.4891,      ?,      ?,      ?],   # 0.6121
           [      ?,-1.4891,      ?,      ?],   # 0.6351
           [      ?,      ?,-0.5531,      ?],   # 0.7118
           [      ?,      ?,      ?,-0.5531],   # 0.7309
           [-1.4891,-1.4891,-0.5531,-0.5531]])  # 1.0000

I do not know the '?' values, and they should be interpolated. I tried replacing them with None, but then get 'nan' for all of my results.

EDIT:

I think I need to use either 'griddata' or 'interp2'. griddata seems to produce the result I expect, but 'interp2' does not.

from scipy import interpolate
from numpy import array
import numpy as np

z = array([[-2.2818,-2.2818,-0.9309,-0.9309],
           [-2.2818,-2.2818,-0.9309,-0.9309],
           [-1.4891,-1.4891,-0.5531,-0.5531],
           [-1.4891,-1.4891,-0.5531,-0.5531]])

rows = array([0.0000, 0.0000, 0.0000, 0.0000,
              0.2620, 0.2784, 0.3379, 0.3526,
              0.6121, 0.6351, 0.7118, 0.7309,
              1.0000, 1.0000, 1.0000, 1.0000])

cols = array([0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000,
              0.0000, 0.1750, 0.8180, 1.0000])

xi = array([0.0000, 0.2620, 0.2784, 0.3379, 0.3526, 0.6121, 0.6351, 0.7118,
               0.7309, 1.0000], dtype=np.float)
yi = array([0.000, 0.175, 0.818, 1.000], dtype=np.float)

GD = interpolate.griddata((rows, cols), z.ravel(),
                          (xi[None,:], yi[:,None]), method='linear')
I2 = interpolate.interp2d(rows, cols, z, kind='linear')

print GD.reshape(4, 10).T
print '\n'
print I2(xi, yi).reshape(4, 10).T

import matplotlib.pyplot as plt
import numpy.ma as ma

plt.figure()
GD = interpolate.griddata((rows.ravel(), cols.ravel()), z.ravel(),
                          (xi[None,:], yi[:,None]), method='linear')
CS = plt.contour(xi,yi,GD,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,GD,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)

plt.figure()
I2 = I2(xi, yi)
CS = plt.contour(xi,yi,I2,15,linewidths=0.5,colors='k')
CS = plt.contourf(xi,yi,I2,15,cmap=plt.cm.jet)
plt.colorbar()
plt.scatter(rows,cols,marker='o',c='b',s=5)
plt.show()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

好多鱼好多余 2024-10-26 11:58:49

看起来你明白了。

在上面的代码示例和之前的(链接)问题中,您有结构化数据。可以使用 RectBivariateSpline 或 interp2d 进行插值。这意味着您拥有可以在网格上描述的数据(网格上的所有点都有一个已知值)。网格不一定必须具有相同的 dx 和 dy。 (如果所有 dx 和 dy 都相等,则您将拥有一个常规网格)

现在,您当前的问题询问如果并非所有点都已知该怎么办。这称为非结构化数据。您所拥有的只是字段中的点选择。您不一定能够构造所有顶点都具有已知值的矩形。对于这种类型的数据,您可以使用(已有的)griddata 或某种 BivariateSpline

现在该选择哪个?

与结构化 RectBivariateSpline 最接近的类比是非结构化 BivariateSpline SmoothBivariateSplineLSQBivariateSpline。如果您想使用样条线来插值数据,请使用这些。这使您的函数变得平滑且可微分,但您可以获得在 Z.max() 或 Z.min() 之外摆动的表面。

由于您正在设置 ky=1kx=1 并且得到的结果我非常确定只是对结构化数据进行线性插值,所以我我个人只是从 RectBivariateSpline 样条线方案切换到 interp2d 结构化网格插值方案。我知道文档说它适用于 常规网格,但是 __doc__ 中的示例 本身只是结构化的,而不是常规的。

如果您最终要切换,我很好奇您是否发现这些方法之间有任何显着差异。欢迎来到 SciPy。

Looks like you got it.

In your upper code example and in your previous (linked) question you have structured data. Which can be interpolated using RectBivariateSpline or interp2d. This means you have data that can be described on a grid (all points on the grid have a known value). The grid doesn't necessarily have to have all the same dx and dy. (if all dx's and dy's were equal, you'd have a Regular Grid)

Now, your current question asks what to do if not all the points are known. This is known as unstructured data. All you have are a selection of points in a field. You can't necessarily construct rectangles where all vertices have known values. For this type of data, you can use (as you have) griddata, or a flavor of BivariateSpline.

Now which to choose?

The nearest analogy to the structured RectBivariateSpline is one of the unstructured BivariateSpline classes: SmoothBivariateSpline or LSQBivariateSpline. If you want to use splines to interpolate the data, go with these. this makes your function smooth and differentiable, but you can get a surface that swings outside Z.max() or Z.min().

Since you are setting ky=1 and kx=1 and are getting what I am pretty sure is just linear interpolation on the structured data, I'd personally just switch from the RectBivariateSpline spline scheme to the interp2d structured grid interpolation scheme. I know the documentation says it is for regular grids, but the example in the __doc__ itself is only structured, not regular.

I'd be curious if you found any significant differences between the methods if you do end up switching. Welcome to SciPy.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文