附近地点的经纬度位置
当给出一个地点附近3个地点的经纬度信息以及到该地点的距离时,如何计算该地点的经纬度?
例如,A、B和C是经纬度(x1,y1)、(x2,y2)和(x3,y3)的三个地点。设 D 与 A、B 和 C 的距离分别为 k1、k2 和 k3-km。如何确定 D 的经纬度。
如果 A、B、C、D 这些点都在一个平面上,则可以通过确定三个圆的交点来计算 A、 B 和 C 的半径分别为 k1、k2 和 k3。但是,当点在球体上而不是圆上时,如何确定位置呢?
How can I calculate the latitude-longitude of a place, when the latitude-longitude information of its 3 nearby places, and the distances to the place are given?
E.g, A,B and C are three places with latitude-longitude (x1,y1), (x2,y2) and (x3,y3). Let D be at distance k1, k2 and k3-km from A, B and C respectively. How can one determine the latitude-longitude of D.
In case, all these points, A,B,C and D are on a plane, then this can be calculated, by determining the point of intersection of the three circles, from A, B and C with radius k1, k2 and k3, respectively. However, how to determine the position, when the points are on a sphere and not on a circle?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
从平面开始,这里是您建议的 3 个圆的替代方法:
。对于球体,可以使用几乎相同的想法。但是:
需要一些时间来习惯使用球面三角函数,但是这是适合这种情况的工具问题。
Starting with a plane, here is an alternative method to your suggested 3 circles:
For a sphere- almost the same idea can be used. However:
It takes some time to get used to working with spherical trigonometry, however this is the right tool for such problems.
我假设 k1、k2、k3 是球体上的距离。
您可以通过使用Vincenty 公式的特殊情况来最精确地解决这个问题。利用 x、y 和 k 的三组值,您可以建立一个方程组来求解第四个点的纬度和经度。由于其复杂性,解决这个系统可能会非常棘手,但可能有计算工具可以执行这样的解决方案。
I'll assume k1, k2, k3 are distances on the sphere.
You may be able to solve this most precisely by using a special case of the Vincenty formula. With your three sets of values for x, y, and k, you can set up a system of equations to solve for the latitude and longitude of the fourth point. Solving this system would probably be extremely tricky due to its complexity, but there may be computational tools that could perform such a solve.