如何使用 Python 创建非 ASCII 树形图?
尝试使用找到的代码块创建树状图,它会一直工作直到调用:
r('mt_dist <- dist(t(mt))')
然后抛出错误:
RPy_RException:dist(t(mt)) 中的错误:无法强制(列表)对象键入“double”
直到它看起来不错......我可能错过了一些非常简单的东西
有帮助吗?
#importing modules
from numpy import array
from random import normalvariate,shuffle
from rpy import r
# creating a random matrix
# creating it with different 'samples' in different columns
mt = []
for l in range(20): #20 lines
line = []
means = range(1,9)
for c in range(8): # 8 columns
#Colum 1: mean 1; Column 2: mean 2.... values normally distributed s.d. = 0.5
line.append(normalvariate(means.pop(), 0.5))
mt.append(line)
# once we have a matrix, transform it in an array
mt_array = array(mt)
# The R work
# Pass the array to 'mt' variable in R
r.assign("mt", mt_array)
# manipulate R via r('command')
r('print(mt)') #print the matrix 'mt' to check values
#The clustering process
#Calculating distances with 'dist'
#'dist' calculates distance among lines, so I am transposing (with t()) in order to have my columns clustered
## I guess 'dist' uses euclidian distance as default
r('mt_dist <- dist(t(mt))')
# hclust does the clustering with upgma as default
r('result = hclust(mt_dist)')
# directs the output to a determinde file
r('png("output_file.png")')
# plot the result
labels = ["sample A", "sample B","sample C", "sample D","sample E", "sample F", "sample G", "sample H"]
r.assign("labels", labels)
r('plot(result, labels=labels, main="My title")')
# 'close' you output
r('dev.off()')
Trying to create a dendrogram with this found code block, and it works up until the call:
r('mt_dist <- dist(t(mt))')
then spouts the error:
RPy_RException: Error in dist(t(mt)) : (list) object cannot be coerced to type 'double'
up until that point it was looking good ... I'm probably missing something really simple
Any help?
#importing modules
from numpy import array
from random import normalvariate,shuffle
from rpy import r
# creating a random matrix
# creating it with different 'samples' in different columns
mt = []
for l in range(20): #20 lines
line = []
means = range(1,9)
for c in range(8): # 8 columns
#Colum 1: mean 1; Column 2: mean 2.... values normally distributed s.d. = 0.5
line.append(normalvariate(means.pop(), 0.5))
mt.append(line)
# once we have a matrix, transform it in an array
mt_array = array(mt)
# The R work
# Pass the array to 'mt' variable in R
r.assign("mt", mt_array)
# manipulate R via r('command')
r('print(mt)') #print the matrix 'mt' to check values
#The clustering process
#Calculating distances with 'dist'
#'dist' calculates distance among lines, so I am transposing (with t()) in order to have my columns clustered
## I guess 'dist' uses euclidian distance as default
r('mt_dist <- dist(t(mt))')
# hclust does the clustering with upgma as default
r('result = hclust(mt_dist)')
# directs the output to a determinde file
r('png("output_file.png")')
# plot the result
labels = ["sample A", "sample B","sample C", "sample D","sample E", "sample F", "sample G", "sample H"]
r.assign("labels", labels)
r('plot(result, labels=labels, main="My title")')
# 'close' you output
r('dev.off()')
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这不是您的 RPy_... 异常问题的答案。而是提供您的标题的答案
How do I create a non-ascii dendrogram with Python?
。您可以尝试绘制树状图 。This is not answer to your RPy_... exception problem. Rather providing answer to your title
How do I create a non-ascii dendrogram with Python?
. You may try this to plot dendrogram.