Python/Scipy 插值(地图坐标)

发布于 2024-10-19 07:22:45 字数 2472 浏览 5 评论 0原文

我正在尝试用 scipy 进行一些插值。我已经浏览了很多例子,但我没有找到我想要的。

假设我有一些数据,其中行和列变量可以从 0 变化到 1。每行和列之间的增量变化并不总是相同(见下文)。

      | 0.00   0.25  0.80  1.00
------|----------------------------
0.00  | 1.40   6.50  1.50  1.80
0.60  | 8.90   7.30  1.10  1.09
1.00  | 4.50   9.20  1.80  1.20

现在我希望能够获取一组 x,y 点并确定插值。我知道我可以用地图坐标来做到这一点。我想知道是否有任何简单/聪明的方法可以将 x,y 值设置为数据数组中的适当索引。

例如,如果我输入 x,y = 0.60, 0.25,那么我应该返回要插值的正确索引。在这种情况下,这将是 1.0, 1.0,因为 0.60, 0.25 将精确映射到第二行和第二列。 x=0.3 将映射为 0.5,因为它位于 0.00 和 0.60 之间的中间位置。

我知道如何获得我想要的结果,但我确信有一个非常快速/清晰的一行或两行(或已经存在的函数)可以做到这一点,使我的代码更加清晰。基本上它需要在一些数组之间分段插值。

这是一个示例(很大程度上基于 Scipy 插值在 numpy 数组上) - 我将 TODO 放在这个新函数所在的位置:

from scipy.ndimage import map_coordinates
from numpy import arange
import numpy as np
#            0.000,  0.175,  0.817,  1.000
z = array([ [ 3.6,    6.5,    9.1,    11.5],    # 0.0000
            [ 3.9,   -7.3,    10.0,   13.1],    # 0.2620
            [ 1.9,    8.3,   -15.0,  -12.1],    # 0.6121
            [-4.5,    9.2,    12.2,   14.8] ])  # 1.0000
ny, nx = z.shape
xmin, xmax = 0., 1.
ymin, ymax = 0., 1.

xrange = array([0.000,  0.175,  0.817,  1.000 ])
yrange = array([0.0000, 0.2620, 0.6121, 1.0000])

# Points we want to interpolate at
x1, y1 = 0.20, 0.45
x2, y2 = 0.30, 0.85
x3, y3 = 0.95, 1.00

# To make our lives easier down the road, let's
# turn these into arrays of x & y coords
xi = np.array([x1, x2, x3], dtype=np.float)
yi = np.array([y1, y2, y3], dtype=np.float)

# Now, we'll set points outside the boundaries to lie along an edge
xi[xi > xmax] = xmax
xi[xi < xmin] = xmin

yi[yi > ymax] = ymax
yi[yi < ymin] = ymin

# We need to convert these to (float) indicies
#   (xi should range from 0 to (nx - 1), etc)
xi = (nx - 1) * (xi - xmin) / (xmax - xmin)
yi = (ny - 1) * (yi - ymin) / (ymax - ymin)
# TODO: Instead, xi and yi need to be mapped as described.  This can only work with
# even spacing...something like:
#xi = SomeInterpFunction(xi, xrange)
#yi = SomeInterpFunction(yi, yrange)

# Now we actually interpolate
# map_coordinates does cubic interpolation by default,
# use "order=1" to preform bilinear interpolation instead...
print xi
print yi
z1, z2, z3 = map_coordinates(z, [yi, xi], order=1)

# Display the results
for X, Y, Z in zip((x1, x2, x3), (y1, y2, y3), (z1, z2, z3)):
    print X, ',', Y, '-->', Z

I'm trying to do some interpolation with scipy. I've gone through many examples, but I'm not finding exactly what I want.

Let's say I have some data where the row and column variable can vary from 0 to 1. The delta changes between each row and column is not always the same (see below).

      | 0.00   0.25  0.80  1.00
------|----------------------------
0.00  | 1.40   6.50  1.50  1.80
0.60  | 8.90   7.30  1.10  1.09
1.00  | 4.50   9.20  1.80  1.20

Now I want to be able to take a set of x,y points and determine the interpolated values. I know I can do this with map_coordinates. I'm wondering if there is any easy/clever way to make an x,y value to the appropriate index in the data array.

For example, if I input x,y = 0.60, 0.25, then I should get back the correct index to be interpolated. In this case, that would be 1.0, 1.0 since 0.60, 0.25 would map exactly to the second row and second column. x=0.3 would map to 0.5 since it is halfway between 0.00 and 0.60.

I know how to get the result I want, but I feel certain that there is a very quick/clear one or two-liner (or function that already exists) that can do this to make my code more clear. Basically it needs to piecewise interpolate between some array.

Here is an example (based heavily on the code from Scipy interpolation on a numpy array) - I put TODO where this new function would go:

from scipy.ndimage import map_coordinates
from numpy import arange
import numpy as np
#            0.000,  0.175,  0.817,  1.000
z = array([ [ 3.6,    6.5,    9.1,    11.5],    # 0.0000
            [ 3.9,   -7.3,    10.0,   13.1],    # 0.2620
            [ 1.9,    8.3,   -15.0,  -12.1],    # 0.6121
            [-4.5,    9.2,    12.2,   14.8] ])  # 1.0000
ny, nx = z.shape
xmin, xmax = 0., 1.
ymin, ymax = 0., 1.

xrange = array([0.000,  0.175,  0.817,  1.000 ])
yrange = array([0.0000, 0.2620, 0.6121, 1.0000])

# Points we want to interpolate at
x1, y1 = 0.20, 0.45
x2, y2 = 0.30, 0.85
x3, y3 = 0.95, 1.00

# To make our lives easier down the road, let's
# turn these into arrays of x & y coords
xi = np.array([x1, x2, x3], dtype=np.float)
yi = np.array([y1, y2, y3], dtype=np.float)

# Now, we'll set points outside the boundaries to lie along an edge
xi[xi > xmax] = xmax
xi[xi < xmin] = xmin

yi[yi > ymax] = ymax
yi[yi < ymin] = ymin

# We need to convert these to (float) indicies
#   (xi should range from 0 to (nx - 1), etc)
xi = (nx - 1) * (xi - xmin) / (xmax - xmin)
yi = (ny - 1) * (yi - ymin) / (ymax - ymin)
# TODO: Instead, xi and yi need to be mapped as described.  This can only work with
# even spacing...something like:
#xi = SomeInterpFunction(xi, xrange)
#yi = SomeInterpFunction(yi, yrange)

# Now we actually interpolate
# map_coordinates does cubic interpolation by default,
# use "order=1" to preform bilinear interpolation instead...
print xi
print yi
z1, z2, z3 = map_coordinates(z, [yi, xi], order=1)

# Display the results
for X, Y, Z in zip((x1, x2, x3), (y1, y2, y3), (z1, z2, z3)):
    print X, ',', Y, '-->', Z

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

赤濁 2024-10-26 07:22:45

我认为你想要一个 二元样条线在矩形结构化网格上:

import numpy
from scipy import interpolate
x = numpy.array([0.0, 0.60, 1.0])
y = numpy.array([0.0, 0.25, 0.80, 1.0])
z = numpy.array([ 
   [ 1.4 ,  6.5 ,  1.5 ,  1.8 ],
   [ 8.9 ,  7.3 ,  1.1 ,  1.09],
   [ 4.5 ,  9.2 ,  1.8 ,  1.2 ]])
# you have to set kx and ky small for this small example dataset
# 3 is more usual and is the default
# s=0 will ensure this interpolates.  s>0 will smooth the data
# you can also specify a bounding box outside the data limits
# if you want to extrapolate
sp = interpolate.RectBivariateSpline(x, y, z, kx=2, ky=2, s=0)

sp([0.60], [0.25])  # array([[ 7.3]])
sp([0.25], [0.60])  # array([[ 2.66427408]])

I think you want a bivariate spline on a rectangular structured mesh:

import numpy
from scipy import interpolate
x = numpy.array([0.0, 0.60, 1.0])
y = numpy.array([0.0, 0.25, 0.80, 1.0])
z = numpy.array([ 
   [ 1.4 ,  6.5 ,  1.5 ,  1.8 ],
   [ 8.9 ,  7.3 ,  1.1 ,  1.09],
   [ 4.5 ,  9.2 ,  1.8 ,  1.2 ]])
# you have to set kx and ky small for this small example dataset
# 3 is more usual and is the default
# s=0 will ensure this interpolates.  s>0 will smooth the data
# you can also specify a bounding box outside the data limits
# if you want to extrapolate
sp = interpolate.RectBivariateSpline(x, y, z, kx=2, ky=2, s=0)

sp([0.60], [0.25])  # array([[ 7.3]])
sp([0.25], [0.60])  # array([[ 2.66427408]])
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文