计算斯特林数的动态规划方法

发布于 2024-10-19 05:07:33 字数 855 浏览 11 评论 0原文

int s_dynamic(int n,int k) {
    int maxj = n-k;

    int *arr = new int[maxj+1];

    for (int i = 0; i <= maxj; ++i)
        arr[i] = 1;

    for (int i = 1; i <= k; ++i)
        for(int j = 1; j <= maxj; ++j)
            arr[j] += i*arr[j-1];

    return arr[maxj];
}

这是我使用动态规划确定斯特林数的尝试。

它的定义如下:

S(n,k) = S(n-1,k-1) + k S(n-1,k),如果 1

k<

S(n,k) = 1,如果 k=1 或 k=n

看起来没问题,对吗?除了当我运行单元测试时......

partitioningTest ..\src\Test.cpp:44 3025 == s_dynamic(9,3) expected:    3025    but was:    4414    

任何人都可以看到我做错了什么吗?

谢谢!

顺便说一句,这是递归解决方案:

int s_recursive(int n,int k) {
    if (k == 1 || k == n)
        return 1;

    return s_recursive(n-1,k-1) + k*s_recursive(n-1,k);
}
int s_dynamic(int n,int k) {
    int maxj = n-k;

    int *arr = new int[maxj+1];

    for (int i = 0; i <= maxj; ++i)
        arr[i] = 1;

    for (int i = 1; i <= k; ++i)
        for(int j = 1; j <= maxj; ++j)
            arr[j] += i*arr[j-1];

    return arr[maxj];
}

Here's my attempt at determining Stirling numbers using Dynamic Programming.

It is defined as follows:

S(n,k) = S(n-1,k-1) + k S(n-1,k), if 1 < k < n

S(n,k) = 1, if k=1 ou k=n

Seems ok, right? Except when I run my unit test...

partitioningTest ..\src\Test.cpp:44 3025 == s_dynamic(9,3) expected:    3025    but was:    4414    

Can anyone see what I'm doing wrong?

Thanks!

BTW, here's the recursive solution:

int s_recursive(int n,int k) {
    if (k == 1 || k == n)
        return 1;

    return s_recursive(n-1,k-1) + k*s_recursive(n-1,k);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

一紙繁鸢 2024-10-26 05:07:33

发现了错误。
您已经计算了 k=1 的动态斯特林数数组(对于所有 n,S(n,1)=1)。
您应该开始计算 S(n,2) - 即:

for (int i = 2; i <= k; ++i) //i=2, not 1
  for(int j = 1; j <= maxj; ++j)
    arr[j] += i*arr[j-1];

Found the bug.
You already computed your dynamic array of Stirlings numbers for k=1 (S(n,1)=1 for all n).
You should start computing S(n,2) - that is:

for (int i = 2; i <= k; ++i) //i=2, not 1
  for(int j = 1; j <= maxj; ++j)
    arr[j] += i*arr[j-1];
触ぅ动初心 2024-10-26 05:07:33

你的方法很好,除了你似乎犯了一个简单的索引错误。如果您考虑一下索引 ij 代表什么,以及内部循环将 arr[j] 转换为什么,您就会发现这很容易够了(我撒谎,我花了半个小时才弄清楚那是什么:))。

根据我的解码,i 表示计算期间的值 k,而 arr[j] 是由 S(i+ j, i-1)S(i+1+j, i)。最上面的 for 循环初始化 arr 将其设置为 S(1+j, 1)。根据这些循环,计算看起来很好。除了一件事:第一个 i 循环假设 arr[j] 包含 S(0+j, 0),因此它这就是你的问题所在。如果将 i 的起始值从 1 更改为 2,一切都应该没问题(对于边缘情况,您可能需要一个或两个 if) 。初始的 i=2 会将 arr[j]S(1+j, 1) 转换为 S(2+j , 2),其余的转换就可以了。

或者,您可以将 arr[j] 初始化为 S(0+j, 0)(如果已定义),但不幸的是,Stirling 的数字在 k 处未定义=0

编辑:显然我上次的评论是错误的。如果将 arr 初始化为 {1, 0, 0, ...},则可以将 i 的起始值保留为 1。为此,您可以使用初始值 S(0, 0)=1S(n, 0)=0, n>0

Your approach is just fine, except you seem to have made a simple indexing error. If you think about what indexes i and j represent, and what the inner loop transforms arr[j] to, you'll see it easy enough (I lie, it took me a good half hour to figure out what was what :)).

From what I can decode, i represents the value k during calculations, and arr[j] is transformed from S(i+j, i-1) to S(i+1+j, i). The topmost for loop that initializes arr sets it up as S(1+j, 1). According to these loops, the calculations look just fine. Except for one thing: The very first i loop assumes that arr[j] contains S(0+j, 0), and so it is where your problem lies. If you change the starting value of i from 1 to 2, all should be OK (you may need an if or two for edge cases). The initial i=2 will transform arr[j] from S(1+j, 1) to S(2+j, 2), and the rest of the transformations will be just fine.

Alternatively, you could have initialized arr[j] to S(0+j, 0) if it were defined, but unfortunately, Stirling's numbers are undefined at k=0.

EDIT: Apparently I was wrong in my last comment. If you initialize arr to {1, 0, 0, ...}, you can leave starting value of i as 1. For this, you use the initial values S(0, 0)=1, and S(n, 0)=0, n>0 instead.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文