这是一个单子吗?

发布于 2024-10-18 20:40:00 字数 986 浏览 4 评论 0原文

我试图理解 monad 的概念,我想知道这段代码是否是这个概念的实现(在 JavaScript 中)。

我有函数 M,它返回新对象,该对象具有创建包装器方法的 set 方法

var foo = M().set('getX', function() { 
  return this.x; 
}).set('setX', function(x) { 
  this.x = x;
}).set('addX', function(x) { 
  this.x += x;
});

,然后我可以链接 foo 的方法

foo.setX(10).addX(20).addX(30).getX()

将返回 60

,如果我有带方法的对象并使用该对象调用 M,则返回 60 。

var foo = {
  x: 10,
  add: function(x) {
    this.x += x;
  }
};

M(foo).add(10).add(20).add(30).x

将返回 70

函数被包装在 M 对象内,因此方法内的 this 上下文始终是该 M 对象。

f = M({x: 20}).set('getX', function() {
   return this.x; 
}).set('addX', function(x) {
   this.x += x;
}).addX(10).getX

所以 f 是由 M 包装的对象上下文的函数 - 如果我调用 f() 它将返回 30。

我理解正确吗? M 是单子吗?

编辑修改后的代码位于 github https://github.com/jcubic/monadic

I'm trying to understand the concept of monads and I want to know if this code is an implementation of this concept (in JavaScript).

I have function M which return new object that have set method which create wrapper method

var foo = M().set('getX', function() { 
  return this.x; 
}).set('setX', function(x) { 
  this.x = x;
}).set('addX', function(x) { 
  this.x += x;
});

And then I can chain method of foo

foo.setX(10).addX(20).addX(30).getX()

will return 60

and the same if I have object with methods and call M with this object.

var foo = {
  x: 10,
  add: function(x) {
    this.x += x;
  }
};

M(foo).add(10).add(20).add(30).x

will return 70

Functions are wrapped inside M object so the this context inside method is always that M object.

f = M({x: 20}).set('getX', function() {
   return this.x; 
}).set('addX', function(x) {
   this.x += x;
}).addX(10).getX

so f is function with context of object wrapped by M — if I call f() it will return 30.

Am I understand this correctly? Is M a monad?

EDIT modified code is on github https://github.com/jcubic/monadic

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

深府石板幽径 2024-10-25 20:40:00

这是一个幺半群模式。每个状态更新操作(例如 .setX(10).addX(20) 等)都是一种转换一个对象的计算。 (为了在语法上有效,您必须将其编写为单参数函数 function(x) {x.addX(20);},但我认为如果我使用缩写形式会更清楚.)

有两件事使它成为一个幺半群。首先,有一个标识元素:.addX(0)对其对象不执行任何操作。其次,任意两个操作可以组合。例如,.setX(10).addX(20) 也是一种转换一个对象的计算。

它不是一个单子。您的方法支持的计算仅限于编写和更新 this.x。 (.getX() 不是幺半群的成员,因为你不能在它后面链接任何东西)。例如,使用 monad,您可以让操作链中的一个成员执行 if-then-else 来决定链中接下来发生的事情。你的方法做不到这一点。

This is a monoid pattern. Each state-updating operation, such as .setX(10), .addX(20), and so forth, is a computation that transforms one object. (To be syntactically valid, you would have to write it as a one-parameter function function(x) {x.addX(20);}, but I think it's clearer if I use the short form.)

Two things make this a monoid. First, there is an identity element: .addX(0) does nothing to its object. Second, any two operations can be combined. For example, .setX(10).addX(20) is also a computation that transforms one object.

It is not a monad. The computations supported by your methods are limited to writing and updating this.x. (.getX() is not a member of the monoid because you can't chain anything after it). For example, with a monad you can have one member of a chain of operations execute an if-then-else to decide what comes next in the chain. Your methods can't do that.

你与昨日 2024-10-25 20:40:00

抛开可变性不谈;据我了解,您所写的内容比单子或幺半群更接近于应用函子。

同样,根据我的理解,幺半群是一个在将单个类型映射到其自身的单个操作下封闭的组(在抽象代数意义上)。如果您实现了add,那么您可能您的原型链实现了幺半群。但即便如此,您也必须自己在每个参数之间手动指定归约作为二元运算,如下所示:

M({x:0}).add(1).add(2)...add(100) === 1050; // or _.reduce([1..100],add)

但是由于您已将不确定数量的函数绑定到类型 (M< /code>),它们都知道如何“解开”该类型,应用预期的函数,然后在退出时恢复“包装器”,然后您就拥有了一种应用函子。

如果您找到了某种方法来组合在 M 上运行的所有函数的范围,那么您将更接近单子实现:

var bigOpFromLittleOps = 
       M({x:0})  .bind(function(x0){
return Madd(1)   .bind(function(x1){
return Madd(2)   .bind(function(x2){
...
return Madd(100) .bind(function(x100){
return Mreturn(x100);
}); ... });});})() === 1050; // Overkill

此类实现很棘手,但使您能够对它们进行切片和切块分成小块,和/或由较小的块组成较大的块。

Mutability aside; to my understanding, what you have written is closer to an applicative functor than either a monad, or a monoid.

Again, to my understanding, a monoid is a Group (in the abstract algebraic sense) closed under a single operation mapping a single type unto itself. If you had only implemented add then you might say that your prototype chain implemented a monoid. But even then, you would have to specify the reduction yourself, by hand, as a binary operation, between each, and every argument, like so:

M({x:0}).add(1).add(2)...add(100) === 1050; // or _.reduce([1..100],add)

But since you have bound an indeterminate number of functions to a type (M), which all know how to 'unwrap' that type, apply the intended function, then restore the 'wrapper' on exit, then you have a sort of applicative functor.

If you had found some way to compose the scopes of all functions operating on M, then you would be closer still to a monadic implementation:

var bigOpFromLittleOps = 
       M({x:0})  .bind(function(x0){
return Madd(1)   .bind(function(x1){
return Madd(2)   .bind(function(x2){
...
return Madd(100) .bind(function(x100){
return Mreturn(x100);
}); ... });});})() === 1050; // Overkill

Such implementations are tricky, but give you the ability to slice and dice them into little pieces, and/or compose larger ones from smaller ones.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文