使用 Scala 解析器组合器解析 CSV 文件
我正在尝试使用 Scala 解析器组合器编写 CSV 解析器。语法基于 RFC4180。我想出了以下代码。它几乎可以工作,但我无法让它正确分隔不同的记录。我错过了什么?
object CSV extends RegexParsers {
def COMMA = ","
def DQUOTE = "\""
def DQUOTE2 = "\"\"" ^^ { case _ => "\"" }
def CR = "\r"
def LF = "\n"
def CRLF = "\r\n"
def TXT = "[^\",\r\n]".r
def file: Parser[List[List[String]]] = ((record~((CRLF~>record)*))<~(CRLF?)) ^^ {
case r~rs => r::rs
}
def record: Parser[List[String]] = (field~((COMMA~>field)*)) ^^ {
case f~fs => f::fs
}
def field: Parser[String] = escaped|nonescaped
def escaped: Parser[String] = (DQUOTE~>((TXT|COMMA|CR|LF|DQUOTE2)*)<~DQUOTE) ^^ { case ls => ls.mkString("")}
def nonescaped: Parser[String] = (TXT*) ^^ { case ls => ls.mkString("") }
def parse(s: String) = parseAll(file, s) match {
case Success(res, _) => res
case _ => List[List[String]]()
}
}
println(CSV.parse(""" "foo", "bar", 123""" + "\r\n" +
"hello, world, 456" + "\r\n" +
""" spam, 789, egg"""))
// Output: List(List(foo, bar, 123hello, world, 456spam, 789, egg))
// Expected: List(List(foo, bar, 123), List(hello, world, 456), List(spam, 789, egg))
更新:问题已解决
默认的 RegexParsers 使用正则表达式 [\s]+
忽略空格,包括空格、制表符、回车符和换行符。上面的解析器无法分离记录的问题就是由于这个原因造成的。我们需要禁用skipWhitespace 模式。将空白定义替换为 [ \t]}
并不能解决问题,因为它将忽略字段内的所有空格(因此 CSV 中的“foo bar”变为“foobar”),这是不希望的。因此,解析器的更新源是
import scala.util.parsing.combinator._
// A CSV parser based on RFC4180
// https://www.rfc-editor.org/rfc/rfc4180
object CSV extends RegexParsers {
override val skipWhitespace = false // meaningful spaces in CSV
def COMMA = ","
def DQUOTE = "\""
def DQUOTE2 = "\"\"" ^^ { case _ => "\"" } // combine 2 dquotes into 1
def CRLF = "\r\n" | "\n"
def TXT = "[^\",\r\n]".r
def SPACES = "[ \t]+".r
def file: Parser[List[List[String]]] = repsep(record, CRLF) <~ (CRLF?)
def record: Parser[List[String]] = repsep(field, COMMA)
def field: Parser[String] = escaped|nonescaped
def escaped: Parser[String] = {
((SPACES?)~>DQUOTE~>((TXT|COMMA|CRLF|DQUOTE2)*)<~DQUOTE<~(SPACES?)) ^^ {
case ls => ls.mkString("")
}
}
def nonescaped: Parser[String] = (TXT*) ^^ { case ls => ls.mkString("") }
def parse(s: String) = parseAll(file, s) match {
case Success(res, _) => res
case e => throw new Exception(e.toString)
}
}
I'm trying to write a CSV parser using Scala parser combinators. The grammar is based on RFC4180. I came up with the following code. It almost works, but I cannot get it to correctly separate different records. What did I miss?
object CSV extends RegexParsers {
def COMMA = ","
def DQUOTE = "\""
def DQUOTE2 = "\"\"" ^^ { case _ => "\"" }
def CR = "\r"
def LF = "\n"
def CRLF = "\r\n"
def TXT = "[^\",\r\n]".r
def file: Parser[List[List[String]]] = ((record~((CRLF~>record)*))<~(CRLF?)) ^^ {
case r~rs => r::rs
}
def record: Parser[List[String]] = (field~((COMMA~>field)*)) ^^ {
case f~fs => f::fs
}
def field: Parser[String] = escaped|nonescaped
def escaped: Parser[String] = (DQUOTE~>((TXT|COMMA|CR|LF|DQUOTE2)*)<~DQUOTE) ^^ { case ls => ls.mkString("")}
def nonescaped: Parser[String] = (TXT*) ^^ { case ls => ls.mkString("") }
def parse(s: String) = parseAll(file, s) match {
case Success(res, _) => res
case _ => List[List[String]]()
}
}
println(CSV.parse(""" "foo", "bar", 123""" + "\r\n" +
"hello, world, 456" + "\r\n" +
""" spam, 789, egg"""))
// Output: List(List(foo, bar, 123hello, world, 456spam, 789, egg))
// Expected: List(List(foo, bar, 123), List(hello, world, 456), List(spam, 789, egg))
Update: problem solved
The default RegexParsers ignore whitespaces including space, tab, carriage return, and line breaks using the regular expression [\s]+
. The problem of the parser above unable to separate records is due to this. We need to disable skipWhitespace mode. Replacing whiteSpace definition to just [ \t]}
does not solve the problem because it will ignore all spaces within fields (thus "foo bar" in the CSV becomes "foobar"), which is undesired. The updated source of the parser is thus
import scala.util.parsing.combinator._
// A CSV parser based on RFC4180
// https://www.rfc-editor.org/rfc/rfc4180
object CSV extends RegexParsers {
override val skipWhitespace = false // meaningful spaces in CSV
def COMMA = ","
def DQUOTE = "\""
def DQUOTE2 = "\"\"" ^^ { case _ => "\"" } // combine 2 dquotes into 1
def CRLF = "\r\n" | "\n"
def TXT = "[^\",\r\n]".r
def SPACES = "[ \t]+".r
def file: Parser[List[List[String]]] = repsep(record, CRLF) <~ (CRLF?)
def record: Parser[List[String]] = repsep(field, COMMA)
def field: Parser[String] = escaped|nonescaped
def escaped: Parser[String] = {
((SPACES?)~>DQUOTE~>((TXT|COMMA|CRLF|DQUOTE2)*)<~DQUOTE<~(SPACES?)) ^^ {
case ls => ls.mkString("")
}
}
def nonescaped: Parser[String] = (TXT*) ^^ { case ls => ls.mkString("") }
def parse(s: String) = parseAll(file, s) match {
case Success(res, _) => res
case e => throw new Exception(e.toString)
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
你错过的是空白。我投入了一些额外的改进。
What you missed is whitespace. I threw in a couple bonus improvements.
从 2.11 开始,Scala Parser Combinators 库不再属于 Scala 标准库,因此没有充分的理由不使用性能更高的 Parboiled2 库。
以下是 Parboiled2 DSL 中的 CSV 解析器版本:
With Scala Parser Combinators library out of the Scala standard library starting from 2.11 there is no good reason not to use the much more performant Parboiled2 library.
Here is a version of the CSV parser in Parboiled2's DSL:
RegexParsers
解析器的默认空白是\s+
,其中包括换行符。因此CR
、LF
和CRLF
永远没有机会被处理,因为它会被解析器自动跳过。The default whitespace for
RegexParsers
parsers is\s+
, which includes new lines. SoCR
,LF
andCRLF
never get a chance to be processed, as it is automatically skipped by the parser.