概率逻辑与模拟

发布于 2024-10-18 05:02:54 字数 280 浏览 3 评论 0原文

有研究文章(例如Chakrapani & Palem)和设备(例如< a href="http://lyricsemi.com/" rel="nofollow">Lyric)使用所谓的概率逻辑。我想这个想法是,在给定一些输入的情况下,这种设备的输出将收敛到某种概率分布。这些设备与使用模拟信号的设备有什么区别?也就是说,这些设备仍然被视为数字、模拟、混合信号吗?

There are research articles (e.g. Chakrapani & Palem) and devices (e.g. Lyric) that use a so-called probabilistic logic. I suppose the idea is that the outputs of such a device, given some inputs, will converge to some probability distribution. What is the difference between these devices and those using analog signals? That is, are these devices still considered digital, analog, mixed-signal?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

眼眸印温柔 2024-10-25 05:02:54

这篇论文似乎描述了某种新颖的(概率)布尔逻辑,而不是关于实现。我只是浏览了一下这篇论文,但这似乎只是其中的另一种理论。顺便说一句,概率逻辑不能给你经典逻辑所给你的东西,有一个简单的原因,即它们不是真值函数(即 A 和 B 的值不仅仅取决于 A 和 B 的值) B)的值。

至于在芯片上实现这样的事情:我认为两者都是可能的。如果你以数字方式进行,那么你就是在计算概率,并且你也可以在 CPU 上运行一些代码。我不太了解模拟实现,但我想任何基本模拟组件(晶体管、运算放大器等)都可以被视为对电压和电流执行某种基本算术运算。电路是否提供符合或近似柯尔莫哥洛夫概率定律的输出,这是另一个问题,但我的猜测是:它在某种程度上是可能的,也许已经做到了。

This paper seems to describe some novel kind of (probabilistic) boolean logic, and it is not about implementation. I only skimmed through the paper, but it seems to be just another one of those theories. There is, by the way, a simple reason why probabilistic logics don't give you what classical logics give you, namely, they are not truth functional (i.e. the value of A & B does not depend solely on the value of A and the value of B).

As for implementing such a thing on a chip: I think both are possible. If you do it digitally, then you're calculating probabilities, and you can just as well run some code on a CPU. I don't really know about analog implementations, but I guess any elementary analog component (transistor, opamp etc) can be seen as performing some kind of basic arithmetic operation on voltages and currents. Whether a circuit gives outputs that adhere to, or approximate, the Kolmogorov laws of probability, that's another question, but my guess is: it is somehow possible and maybe it has been done.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文