多项式乘法复杂度降低

发布于 2024-10-17 18:10:01 字数 279 浏览 7 评论 0原文

我已经想了三天了,但一无所获。我必须实现多项式乘法(乘以 2 个二次方程)。它们看起来像:

( a1 x^2 + b1 x + c1 ) * ( a2 x^2 + b2 x + c2 );

但更棘手的部分是通过 5 个系数乘法来实现它。我已将其减少到 6。例如,a1 * b1、( a1 + a2 ) * ( b1 + b2 ) 算作一次乘法。但是 (a1 x + a2 ) * ( b1 x + b2 ) 算作 4 (a1 b1, a1 b2, a2 b1, a2 b2)。

I have been trying to figure tis ou for 3 days and have not gotten anywhere. I have to implement polynomial multiplication (multiply 2 quadratic equations). They look like:

( a1 x^2 + b1 x + c1 ) * ( a2 x^2 + b2 x + c2 );

But the trickier part is to implement it in 5 coefficient multplications. I have reduced it to 6. For eg, a1 * b1, ( a1 + a2 ) * ( b1 + b2 ) count as one multiplication. But (a1 x + a2 ) * ( b1 x + b2 ) count as 4 (a1 b1, a1 b2, a2 b1, a2 b2).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

橙味迷妹 2024-10-24 18:10:01

您可能想看看多精度乘法中使用的 Toom-3 算法。参考:Toom-Cook 乘法

基本上,您仅使用加法和移位来计算 x=-2,-1,0,+1,无​​穷大处的每个多项式,然后将这 5 个值相乘以获得 x=-2,-1,0 处的乘积值, +1,无穷大。最后一步是返回结果的系数。

对于 P(X) = A*X^2 + B*X + C,x=-2,-1,0,+1,无​​穷大处的值为:

P(-2) = 4*A - 2*B + C  (the products here are bit shifts)
P(-1) = A - B + C
P( 0) = C
P(+1) = A + B + C
P(oo) = A

乘积 R( X) = T*X^4 + U*X^3 + V*X^2 + W*X + K,其值为:

R(-2) = 16*T - 8*U + 4*V - 2*W + K
R(-1) = T - U + V - W + K
R( 0) = K
R(+1) = T + U + V + W + K
R(oo) = T

您知道值 R(x) = P( x)*Q(x) 对于 x=-2,-1,0,+1,无​​穷大,您必须求解这个线性系统以获得系数 T,U,V,W,K。

You may want to have a look at the Toom-3 algorithm used in multiprecision multiplication. Ref: Toom-Cook multiplication.

Basically, you eval each polynomial at x=-2,-1,0,+1,infinity using only additions and shifts, then multiply these 5 values to get the values of the product at x=-2,-1,0,+1,infinity. The final step is to get back to the coefficients of the result.

For P(X) = A*X^2 + B*X + C the values at x=-2,-1,0,+1,infinity are:

P(-2) = 4*A - 2*B + C  (the products here are bit shifts)
P(-1) = A - B + C
P( 0) = C
P(+1) = A + B + C
P(oo) = A

The product R(X) = T*X^4 + U*X^3 + V*X^2 + W*X + K, and the values are:

R(-2) = 16*T - 8*U + 4*V - 2*W + K
R(-1) = T - U + V - W + K
R( 0) = K
R(+1) = T + U + V + W + K
R(oo) = T

You know the values R(x) = P(x)*Q(x) for x=-2,-1,0,+1,infinity, and you have to solve this linear system to get coefficients T,U,V,W,K.

旧梦荧光笔 2024-10-24 18:10:01

嗯,我想我找到了答案。

将其替换为 ( x * ( A1*x + b1 ) + c1 ) * ( x *( a2 * x + b2 ) + c2 );

这样你就得到了 5 次乘法。

抱歉,此内容已被编辑,我的第一个答案是错误的,并且确实有 9 次乘法。

Hmm I think I found the answer.

you replace it to ( x * ( A1*x + b1 ) + c1 ) * ( x *( a2 * x + b2 ) + c2 );

and there you have it 5 multiplications .

Sorry this was edited , my first answer was wrong and had 9 multiplications indeed.

一张白纸 2024-10-24 18:10:01

我还找到了一个6乘法的解决方案,可以帮助你自己或其他人解决。

M1 := (a1 + b1)*(a2 + b2)  
M2 := (a1 + c1)*(a2 + c2)  
M3 := (b1 + c1)*(b2 + c2)  
M4 := a1 * a2  
M5 := b1 * b2  
M6 := c1 * c2

然后给出:

M4 * x^4 + 
(M1 - M4 - M5) * x^3 + 
(M2 - M4 - M6 + M5) * x^2 +
(M3 - M5 - M6) * x +
M6

I have also found a 6 multiplication solution, which could help yourself or others solve.

M1 := (a1 + b1)*(a2 + b2)  
M2 := (a1 + c1)*(a2 + c2)  
M3 := (b1 + c1)*(b2 + c2)  
M4 := a1 * a2  
M5 := b1 * b2  
M6 := c1 * c2

This then gives :

M4 * x^4 + 
(M1 - M4 - M5) * x^3 + 
(M2 - M4 - M6 + M5) * x^2 +
(M3 - M5 - M6) * x +
M6
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文