如何缩放圆环并保持管半径不变?
如果我有一个像这样定义的环面。
u,v are in the interval [0, 2π),
R is the distance from the center of the tube to the center of the torus,
r is the radius of the tube.
我想放大R并保持r不变,如何使用变换矩阵来做到这一点,或者可能吗?
If I have a torus defined like this.
u,v are in the interval [0, 2π),
R is the distance from the center of the tube to the center of the torus,
r is the radius of the tube.
I want to enlarge the R and keep r unchanged, how to use transformation matrix to do it, or is it possible?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您正在寻找的变换不是线性的,因此它不能用矩阵表示。
为了说明它不是线性的,想象一下以原点为中心的圆环与 xy 平面平行。正 x 轴与环面相交于两点;我们将离原点较近的称为
a
,将较远的称为b
。应用转换后,我们预计
a
和b
都远离原点相同的量。但由于b
是a
的倍数,这是不可能的:与
a
和b
相关的相同倍数也是如此涉及a
与b
相比移动了多远。即使将圆环投影到平面上,也会遇到同样的问题。
The transformation you're looking for is not linear, so it can't be represented by a matrix.
To tell that it's not linear, imagine the torus centered at the origin laid out parallel to the xy-plane. The positive x-axis intersects the torus at two points; let's call the one closer to the origin
a
and the farther oneb
.After you apply your transformation, we expect that
a
andb
both moved away from the origin by the same amount. But sinceb
is a multiple ofa
, this is impossible:The same multiple that relates
a
andb
also relates how fara
moved compared tob
.You will have the same problem even if you project the torus onto a plane.