数独求解器无限递归
我正在编写一个数独求解器。我已经很长时间没有接触过序言了,因此我不记得有关统一、回溯等的所有内容。我认为我导致系统永远回溯(但我没有得到任何堆栈异常 - 至少没有)立即地)。这是我到目前为止所拥有的(可以在 http 找到该谜题://en.wikipedia.org/wiki/File:Sudoku-by-L2G-20050714.svg):
% representation of the example puzzle
puzzle([5, 3, _, _, 7, _, _, _, _],
[6, _, _, 1, 9, 5, _, _, _],
[_, 9, 8, _, _, _, _, 6, _],
[8, _, _, _, 6, _, _, _, 3],
[4, _, _, 8, _, 3, _, _, 1],
[7, _, _, _, 2, _, _, _, 6],
[_, 6, _, _, _, _, 2, 8, _],
[_, _, _, 4, 1, 9, _, _, 5],
[_, _, _, _, 8, _, _, 7, 9]).
% solve(S)
% the starting point of the program
% saves the solution in the variable S
solve(R1, R2, C1) :-
% save the rows into variables
puzzle(R1, R2, R3, R4, R5, R6, R7, R8, R9),
% solve for each row
allunique(R1), allunique(R2), allunique(R3),
allunique(R4), allunique(R5), allunique(R6),
allunique(R7), allunique(R8), allunique(R9),
% the columns must be created first
nelement(R1, 1, C11), nelement(R2, 1, C21), nelement(R3, 1, C31),
nelement(R4, 1, C41), nelement(R5, 1, C51), nelement(R6, 1, C61),
nelement(R7, 1, C71), nelement(R8, 1, C81), nelement(R9, 1, C91),
C1 = [C11, C21, C31, C41, C51, C61, C71, C81, C91],
allunique(C1).
% allunique(List)
% Succeeds if all the numbers of List are between 1-9
% and each number exists only once
allunique([]). % Recursion stops when the list is empty
% A member should be between 1-9 and not a member of the tail
allunique([H|T]) :-
allunique(T),
member(H, [1, 2, 3, 4, 5, 6, 7, 8, 9]),
not(member(H, T)).
% nelement(List, N-th, X)
% Saves the nth element of a list in variable X
nelement([H|_], 1, H). % The first element is the head
% All other elements will be found in the tail
nelement([_|T], N, X) :-
N > 1,
N1 is N-1,
nelement(T, N1, X).
行 allunique(C1)
导致问题。系统似乎将 7 放入第一列的第一个空框中,并且从未更改它(或至少在不久的将来不会更改)。 C1 列表示例为 [5, 6, 7, 8, 4, 7, 9, 8, 6]
。我很好奇为什么会发生这种情况。
I am writing a sudoku solver. It has been a long time since I have touched prolog, thus I don't remember everything regarding unification, backtracking, etc. I think that I cause the system to backtrack forever (but I don't get any stack exceptions - at least not immediately). This is what I have so far (the puzzle can be found at http://en.wikipedia.org/wiki/File:Sudoku-by-L2G-20050714.svg):
% representation of the example puzzle
puzzle([5, 3, _, _, 7, _, _, _, _],
[6, _, _, 1, 9, 5, _, _, _],
[_, 9, 8, _, _, _, _, 6, _],
[8, _, _, _, 6, _, _, _, 3],
[4, _, _, 8, _, 3, _, _, 1],
[7, _, _, _, 2, _, _, _, 6],
[_, 6, _, _, _, _, 2, 8, _],
[_, _, _, 4, 1, 9, _, _, 5],
[_, _, _, _, 8, _, _, 7, 9]).
% solve(S)
% the starting point of the program
% saves the solution in the variable S
solve(R1, R2, C1) :-
% save the rows into variables
puzzle(R1, R2, R3, R4, R5, R6, R7, R8, R9),
% solve for each row
allunique(R1), allunique(R2), allunique(R3),
allunique(R4), allunique(R5), allunique(R6),
allunique(R7), allunique(R8), allunique(R9),
% the columns must be created first
nelement(R1, 1, C11), nelement(R2, 1, C21), nelement(R3, 1, C31),
nelement(R4, 1, C41), nelement(R5, 1, C51), nelement(R6, 1, C61),
nelement(R7, 1, C71), nelement(R8, 1, C81), nelement(R9, 1, C91),
C1 = [C11, C21, C31, C41, C51, C61, C71, C81, C91],
allunique(C1).
% allunique(List)
% Succeeds if all the numbers of List are between 1-9
% and each number exists only once
allunique([]). % Recursion stops when the list is empty
% A member should be between 1-9 and not a member of the tail
allunique([H|T]) :-
allunique(T),
member(H, [1, 2, 3, 4, 5, 6, 7, 8, 9]),
not(member(H, T)).
% nelement(List, N-th, X)
% Saves the nth element of a list in variable X
nelement([H|_], 1, H). % The first element is the head
% All other elements will be found in the tail
nelement([_|T], N, X) :-
N > 1,
N1 is N-1,
nelement(T, N1, X).
The line allunique(C1)
causes the problem. It seems that the system puts a 7 in the first empty box of the 1st column and never changes it (or at least not in the near future). An example C1 list is [5, 6, 7, 8, 4, 7, 9, 8, 6]
. I am curious to find out why this is happening.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
[5, 6, 7, 8, 4, 7, 9, 8, 6]
不满足allunique
因为它包含8两次。
solve/3
是不正确的,因为它检查所有行,但只检查一列并且没有“区域”(3x3 方块)。solve/1
谓词没有出现,所以我无法测试你的代码;allunique/1
和nelement/3
看起来不错。[5, 6, 7, 8, 4, 7, 9, 8, 6]
doesn't satisfyallunique
since it contains8
twice.solve/3
is incorrect since it checks all rows, but only one column and no "region" (the 3x3 squares).solve/1
predicate promised in the comments doesn't appear, so I can't test your code;allunique/1
andnelement/3
seem fine.