查找矩阵中的面积数

发布于 2024-10-16 12:37:16 字数 209 浏览 4 评论 0原文

假设我有一个类似这样的矩阵:

1 1 1 0 0 0
1 1 1 0 0 1
0 0 0 0 0 1

如果两个“1”彼此相邻(仅水平和垂直),因此属于同一区域。我需要找出矩阵中有多少个这些区域。您可以看到该矩阵中有两个区域为“1”。我已经尝试解决这个问题几个小时了,但是代码变得非常大而且令人厌恶。有没有我可以采用的算法来解决这个问题?

Assume I have a matrix something like this :

1 1 1 0 0 0
1 1 1 0 0 1
0 0 0 0 0 1

If two '1' are next to each other (horizontally and vertically only) and therefore belong to the same area. I need to find how many of these areas are there in a matrix. You can see that there's two areas of '1' in this matrix. I've been trying to solve this for hours now but the code gets really big and disgusting. Are there any algorithms out there I could adopt for this problem ?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

忘你却要生生世世 2024-10-23 12:37:16

如果您并不真正关心:

  • 保持输入矩阵完整

  • 性能和优化

,那么这是我在C中对此问题的看法:

#include <stdio.h>

#define X       8
#define Y       4

#define IGN     1

int A[Y][X] = {
        { 1, 1, 1, 0, 0, 0, 0, 1 },
        { 1, 1, 1, 0, 0, 1, 0, 1 },
        { 0, 0, 0, 0, 0, 1, 0, 1 },
        { 0, 0, 0, 0, 0, 1, 1, 1 },
};

int blank(int x, int y) {
        if ((x < 0) || (x >= X) || (y < 0) || (y >= Y) || (A[y][x] == 0))
                return 0;

        A[y][x] = 0;

        return 1 + blank(x - 1, y) + blank(x + 1, y) + blank(x, y - 1) + blank(x, y + 1);
}

int main() {
        int areas = 0;

        int i, j = 0;

        for (i = 0; i < X; ++i)
                for (j = 0; j < Y; ++j)
                        if (A[j][i] == 1)
                                if (blank(i, j) > IGN)
                                        areas++;

        printf("Areas: %i\n", areas);

        return 0;
}

一旦当它遇到 1 时,它会递归地扩展所有相邻的 1 元素,对它们进行计数并将它们转换为 0。如果该区域的大小大于 IGN,则将其考虑在内。

注意:

  • 如果需要保留原始矩阵,则必须使用副本进行输入。

  • 如果您打算使用它,您可能应该将此代码转换为从参数获取数组及其大小的函数。应该避免 main() 中的全局变量和算法实现,但我在这种情况下例外,因为它降低了代码的复杂性并使算法更加清晰。

  • IGN 设置为 1 时,单独的元素不被视为区域。将 IGN 更改为 0 也会得到这些。

  • 循环中的 if (A[j][i] == 1) 条件并不是严格必要的,但它通过避免不必要的函数调用来作为次要优化,尽管编译器可能会进行优化使其冗余。

  • 您可以轻松修改它以获取每个区域中的元素列表。

If you don't really care about:

  • Keeping the input matrix intact

  • Performance and optimisations

then here's my take on this problem in C:

#include <stdio.h>

#define X       8
#define Y       4

#define IGN     1

int A[Y][X] = {
        { 1, 1, 1, 0, 0, 0, 0, 1 },
        { 1, 1, 1, 0, 0, 1, 0, 1 },
        { 0, 0, 0, 0, 0, 1, 0, 1 },
        { 0, 0, 0, 0, 0, 1, 1, 1 },
};

int blank(int x, int y) {
        if ((x < 0) || (x >= X) || (y < 0) || (y >= Y) || (A[y][x] == 0))
                return 0;

        A[y][x] = 0;

        return 1 + blank(x - 1, y) + blank(x + 1, y) + blank(x, y - 1) + blank(x, y + 1);
}

int main() {
        int areas = 0;

        int i, j = 0;

        for (i = 0; i < X; ++i)
                for (j = 0; j < Y; ++j)
                        if (A[j][i] == 1)
                                if (blank(i, j) > IGN)
                                        areas++;

        printf("Areas: %i\n", areas);

        return 0;
}

Once it encounters a 1, it recursively expands over all neighbouring 1 elements, counting them and turning them into 0. If the size of the area is larger than IGN, then it is taken into account.

Notes:

  • If you need to keep the original matrix, you would have to use a copy for input.

  • If you plan on using this, you should probably turn this code into functions that get the array and its size from their parameters. Global variables and algorithm implementations in main() should be avoided, but I made an exception in this case because it reduces the complexity of the code and allows the algorithm to be more clear.

  • With IGN set to 1, lone elements are not considered an area. Changing IGN to 0 will get those too.

  • The if (A[j][i] == 1) conditional in the loop is not strictly necessary, but it serves as a minor optimisation by avoiding unnecessary function calls, although compiler optimisations probably make it redudant.

  • You can easily modify this to get a listing of the elements in each area.

没︽人懂的悲伤 2024-10-23 12:37:16

这有帮助吗?我假设“相同区域”意味着这些点属于相同的连接组件

http://en.wikipedia.org/wiki/Connected_Component_Labeling

Would this help? I assume that with "same area" you mean that the points belong to same connected component.

http://en.wikipedia.org/wiki/Connected_Component_Labeling

半透明的墙 2024-10-23 12:37:16

这个 python 函数应该可以解决问题(它在你的示例和我随机编写的其他一些示例中都可以):

def countareas(A):

    areas=0

    maxi=len(A)
    if maxi==0:
        return(0)

    maxj=len(A[0])
    if maxj==0:
        return(0)

    allposlist=[]

    a=0
    while a<maxi:
        b=0
        while b<maxj:
            if (a,b) not in allposlist and A[a][b]!=0:
                areas+=1        
                allposlist.append((a,b))
                thisarea=[(a,b)]
                cont=True
                while cont:
                    pair = thisarea.pop(0)
                    i=pair[0]
                    j=pair[1]
                    if i-1>=0:
                        if (i-1,j) not in allposlist and A[i-1][j]==A[i][j]:
                            thisarea.append((i-i,j))
                            allposlist.append((i-1,j))
                    if i+1<maxi:
                        if (i+1,j) not in allposlist and A[i+1][j]==A[i][j]:
                            thisarea.append((i+1,j))
                            allposlist.append((i+1,j))
                    if j-1>=0:
                        if (i,j-1) not in allposlist and A[i][j-1]==A[i][j]:
                            thisarea.append((i,j-1))
                            allposlist.append((i,j-1))
                    if j+1<maxj:
                        if (i,j+1) not in allposlist and A[i][j+1]==A[i][j]:
                            thisarea.append((i,j+1))
                            allposlist.append((i,j+1))

                    if len(thisarea)==0:
                        cont=False
            b+=1
        a+=1

    return(areas)

This python function should do the trick (it does on your example and on some others I randomly made up):

def countareas(A):

    areas=0

    maxi=len(A)
    if maxi==0:
        return(0)

    maxj=len(A[0])
    if maxj==0:
        return(0)

    allposlist=[]

    a=0
    while a<maxi:
        b=0
        while b<maxj:
            if (a,b) not in allposlist and A[a][b]!=0:
                areas+=1        
                allposlist.append((a,b))
                thisarea=[(a,b)]
                cont=True
                while cont:
                    pair = thisarea.pop(0)
                    i=pair[0]
                    j=pair[1]
                    if i-1>=0:
                        if (i-1,j) not in allposlist and A[i-1][j]==A[i][j]:
                            thisarea.append((i-i,j))
                            allposlist.append((i-1,j))
                    if i+1<maxi:
                        if (i+1,j) not in allposlist and A[i+1][j]==A[i][j]:
                            thisarea.append((i+1,j))
                            allposlist.append((i+1,j))
                    if j-1>=0:
                        if (i,j-1) not in allposlist and A[i][j-1]==A[i][j]:
                            thisarea.append((i,j-1))
                            allposlist.append((i,j-1))
                    if j+1<maxj:
                        if (i,j+1) not in allposlist and A[i][j+1]==A[i][j]:
                            thisarea.append((i,j+1))
                            allposlist.append((i,j+1))

                    if len(thisarea)==0:
                        cont=False
            b+=1
        a+=1

    return(areas)
梦冥 2024-10-23 12:37:16

我尝试过使用 DFS 算法方法的 python 实现时间复杂度为 O(M x N)。该函数的输入是一个 M*N 列表。

rows, cols = 0, 0

# The main function that provides count of islands in a given M*N matrix
def traverse_dfs(A, directions, i, j, visited):
    global rows, cols

    # A function to check if a given cell (row, col) can be included in DFS
    def isSafe(A, row, col, visited, current):
        return ( row >=0 and row < rows and col >=0 and col < cols and \
            not visited[row][col] and (current == A[row][col]))
    visited[i][j] = True

    # print i, j
    # Recurrence for all connected neighbours
    for k in range(len(directions)):
        if isSafe(A, i+directions[k][0], j+directions[k][1], visited, A[i][j]):
            traverse_dfs(A, directions, i+directions[k][0], j+directions[k][1], visited)

def countRegions(A):
    global rows, cols
    rows, cols = len(A), len(A[0])
    print A
    if(rows is 1 and cols is 1):
        return 1

    # Below list gives the possible directions in which we can move
    directions = [[1, 0], [0, -1], [-1, 0], [0, 1]]
    visited = []

    # Make a bool array to mark visited cells, Initially all cells are unvisited
    for i in range(rows):
        l = []
        for j in range(cols):
            l.append(False)
        visited.append(l)

    count = 0
    for i in range(rows):
        for j in range(cols):
            if not visited[i][j]:
                traverse_dfs(A, directions, i, j, visited)
                count += 1
    print "Regions count: {0}".format(count)


[[5, 4, 4], [4, 3, 4], [3, 2, 4], [2, 2, 2], [3, 3, 4], [1, 4, 4], [4, 1, 1]]
Regions count: 11
[[2, 3, 3], [4, 4, 1], [2, 1, 1], [5, 2, 3], [5, 2, 2], [1, 4, 1], [3, 4, 1]]
Regions count: 12
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Regions count: 9
[[1, 1, 1], [2, 2, 2], [3, 3, 3]]
Regions count: 3
[[1, 1], [2, 2], [3, 3]]
Regions count: 3
[[1, 2], [1, 2]]
Regions count: 2
[[1, 2], [3, 4]]
Regions count: 4
[[1, 1], [1, 1]]
Regions count: 1
[[1], [2]]
Regions count: 2
[[1, 0, 1], [0, 1, 0], [1, 0, 1]]
Regions count: 9

I have tried a python implementation that uses DFS algorithmic approach & works with time complexity O(M x N). Input for the function is a M*N list.

rows, cols = 0, 0

# The main function that provides count of islands in a given M*N matrix
def traverse_dfs(A, directions, i, j, visited):
    global rows, cols

    # A function to check if a given cell (row, col) can be included in DFS
    def isSafe(A, row, col, visited, current):
        return ( row >=0 and row < rows and col >=0 and col < cols and \
            not visited[row][col] and (current == A[row][col]))
    visited[i][j] = True

    # print i, j
    # Recurrence for all connected neighbours
    for k in range(len(directions)):
        if isSafe(A, i+directions[k][0], j+directions[k][1], visited, A[i][j]):
            traverse_dfs(A, directions, i+directions[k][0], j+directions[k][1], visited)

def countRegions(A):
    global rows, cols
    rows, cols = len(A), len(A[0])
    print A
    if(rows is 1 and cols is 1):
        return 1

    # Below list gives the possible directions in which we can move
    directions = [[1, 0], [0, -1], [-1, 0], [0, 1]]
    visited = []

    # Make a bool array to mark visited cells, Initially all cells are unvisited
    for i in range(rows):
        l = []
        for j in range(cols):
            l.append(False)
        visited.append(l)

    count = 0
    for i in range(rows):
        for j in range(cols):
            if not visited[i][j]:
                traverse_dfs(A, directions, i, j, visited)
                count += 1
    print "Regions count: {0}".format(count)


[[5, 4, 4], [4, 3, 4], [3, 2, 4], [2, 2, 2], [3, 3, 4], [1, 4, 4], [4, 1, 1]]
Regions count: 11
[[2, 3, 3], [4, 4, 1], [2, 1, 1], [5, 2, 3], [5, 2, 2], [1, 4, 1], [3, 4, 1]]
Regions count: 12
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Regions count: 9
[[1, 1, 1], [2, 2, 2], [3, 3, 3]]
Regions count: 3
[[1, 1], [2, 2], [3, 3]]
Regions count: 3
[[1, 2], [1, 2]]
Regions count: 2
[[1, 2], [3, 4]]
Regions count: 4
[[1, 1], [1, 1]]
Regions count: 1
[[1], [2]]
Regions count: 2
[[1, 0, 1], [0, 1, 0], [1, 0, 1]]
Regions count: 9
挽袖吟 2024-10-23 12:37:16

这是Java实现

public static int numberOfIslands(int[][] m) {
    int rows = m.length;
    int columns = m[0].length;
    boolean[][] visited = new boolean[rows][columns];
    int count = 0;

    for (int row = 0; row < rows; row++) {
        for (int column = 0; column < columns; column++) {
            if (m[row][column] == 1 && !visited[row][column]) {
                dfs(m, row, column, visited);
                count++;
            }               
        }
    }

    return count;
}

private static void dfs(int[][] m, int row, int column, boolean[][] visited) {
    visited[row][column] = true;
    for (Direction direction : Direction.values()) {
        int newRow = row + direction.getRowDelta();
        int newColumn = column + direction.getColumnDelta();
        if (isValid(m, newRow, newColumn, visited)) {
            dfs(m, newRow, newColumn, visited);
        }
    }
}

private static boolean isValid(int[][] m, int row, int column, boolean[][] visited) {
    if (row >= 0 && row < m.length &&
            column >=0 && column < m[0].length &&
            m[row][column] == 1 &&
            !visited[row][column]) {
        return true;
    }
    return false;
}

private enum Direction {
    N(-1, 0),NE(-1, 1), E(0, 1),  SE(1,1), S(1, 0), SW(1, -1), W(0, -1), NW(-1, -1);

    private int rowDelta;
    private int columnDelta;

    private Direction(int rowDelta, int columnDelta) {
        this.rowDelta = rowDelta;
        this.columnDelta = columnDelta;
    }

    public int getRowDelta() {
        return rowDelta;
    }

    public int getColumnDelta() {
        return columnDelta;
    }

    @Override
    public String toString() {
        return String.format("%s(%d, %d)", this.name(), this.getRowDelta(), this.getColumnDelta());
    }
}

这是测试用例

@Test
public void countIslandsTest() {
    int[][] m = { { 1, 1, 0, 0 },
                  { 0, 0, 0, 1 },
                  { 0, 0, 1, 1 }
                };
    int result = MatrixUtil.numberOfIslands(m);
    assertThat(result, equalTo(2));

    m = new int[][]{ {1, 1, 0, 0, 0},
              {0, 1, 0, 0, 1},
              {0, 0, 0, 1, 1},
              {0, 0, 0, 0, 0},
              {0, 0, 0, 0, 1}
            };
    result = MatrixUtil.numberOfIslands(m);
    assertThat(result, equalTo(3));

}

Here is the Java implementation

public static int numberOfIslands(int[][] m) {
    int rows = m.length;
    int columns = m[0].length;
    boolean[][] visited = new boolean[rows][columns];
    int count = 0;

    for (int row = 0; row < rows; row++) {
        for (int column = 0; column < columns; column++) {
            if (m[row][column] == 1 && !visited[row][column]) {
                dfs(m, row, column, visited);
                count++;
            }               
        }
    }

    return count;
}

private static void dfs(int[][] m, int row, int column, boolean[][] visited) {
    visited[row][column] = true;
    for (Direction direction : Direction.values()) {
        int newRow = row + direction.getRowDelta();
        int newColumn = column + direction.getColumnDelta();
        if (isValid(m, newRow, newColumn, visited)) {
            dfs(m, newRow, newColumn, visited);
        }
    }
}

private static boolean isValid(int[][] m, int row, int column, boolean[][] visited) {
    if (row >= 0 && row < m.length &&
            column >=0 && column < m[0].length &&
            m[row][column] == 1 &&
            !visited[row][column]) {
        return true;
    }
    return false;
}

private enum Direction {
    N(-1, 0),NE(-1, 1), E(0, 1),  SE(1,1), S(1, 0), SW(1, -1), W(0, -1), NW(-1, -1);

    private int rowDelta;
    private int columnDelta;

    private Direction(int rowDelta, int columnDelta) {
        this.rowDelta = rowDelta;
        this.columnDelta = columnDelta;
    }

    public int getRowDelta() {
        return rowDelta;
    }

    public int getColumnDelta() {
        return columnDelta;
    }

    @Override
    public String toString() {
        return String.format("%s(%d, %d)", this.name(), this.getRowDelta(), this.getColumnDelta());
    }
}

Here is the test case

@Test
public void countIslandsTest() {
    int[][] m = { { 1, 1, 0, 0 },
                  { 0, 0, 0, 1 },
                  { 0, 0, 1, 1 }
                };
    int result = MatrixUtil.numberOfIslands(m);
    assertThat(result, equalTo(2));

    m = new int[][]{ {1, 1, 0, 0, 0},
              {0, 1, 0, 0, 1},
              {0, 0, 0, 1, 1},
              {0, 0, 0, 0, 0},
              {0, 0, 0, 0, 1}
            };
    result = MatrixUtil.numberOfIslands(m);
    assertThat(result, equalTo(3));

}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文