常规语言与 1*0* 相交得到 1n0n

发布于 2024-10-16 05:57:41 字数 221 浏览 3 评论 0原文

我正在读一本关于自动机理论的书,书中给出了一个例子,即具有相同数量的 0 和 1 的语言与 1*0* 相交将得到 1n0n,其中 n > 1。 0

所以我的问题是,如何找到一些与 1*0* 相交时也会得到 1n0n 的常规语言。有没有办法思考一下?

更新: 感谢您的回答!我想我想要找到的是一些常规语言,所以像 1n0n 这样的语言是行不通的;) 是否可以?有什么想法吗?

I'm reading a book on automata theory, and the book gives an example that a language with equal number of 0s and 1s intersects with 1*0* would result 1n0n, where n > 0

So my question is, how can I find some regular languages that when intersected with 1*0*, would also results in 1n0n. Is there a way to think about that?

update:
Thanks for the answers! I guess what I'm trying to find is some regular languages, so the ones like 1n0n wouldn't work ;)
Is it possible? Any ideas?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

一萌ing 2024-10-23 05:57:41

注意:具有相等且无限数量的 0 和 1 的语言不是常规语言。

至于你的问题,我认为你不需要添加任何更多的限制一些后面跟着一些零来得到n个后面跟着n个零除了您给出的两个之外。

有无数种简单构造的语言满足以下条件:A1nB0nC 其中 A、B 和 C 是可以匹配零宽度的任何表达式。

N.B. The language with an equal and unbounded number of 0s and 1s is not a regular language.

As for your question, I don't think there are any more restrictions you can add to some ones followed by some zeros to get n ones followed by n zeros other than the two you have given.

There are an infinite number of trivially-constructed languages that satisfy the conditions: A1nB0nC where A, B and C are any expressions that can match zero width.

≈。彩虹 2024-10-23 05:57:41

只需将问题想象为:“哪些语言与 1n0m 相交时,给出语言 1n0n?”基本上,任何添加 n=m 约束的东西。

一个例子是 anbn,其中 a!=b。
另一种是L = { 1n0n1m0m | n!=m,n>=0,m>=0}

另外,正如 OrangeDog 指出的那样,1n0n 不是正则的,并且由于正则语言在交集下是封闭的,因此任何与 1*0* 交集的语言都给出 1n0n 不规则。

Just think of the question as: "What languages, when intersected with 1n0m, give the language 1n0n?" Basically, anything that adds the constraint that n=m.

One example is anbn, where a!=b.
Another one is L = { 1n0n1m0m | n!=m, n >= 0, m >= 0 }.

Also, as OrangeDog pointed out, 1n0n is not regular, and since regular languages are closed under intersection, it follows that any language whose intersection with 1*0* gives 1n0n is not regular.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文