计算算法的时间复杂度

发布于 2024-10-16 04:07:51 字数 306 浏览 1 评论 0原文

可能的重复:
Big O 的简单英语解释

我已经做编程四年了,但我从来没有关注过时间复杂度到底是什么。我明天有一个面试,我知道他们会问我有关它的问题。任何人都可以帮助我通过示例简单地理解时间复杂度吗?通过查看代码,我们如何确定其复杂度是 O(n) 还是 O( log n) O(n) 等?

Possible Duplicate:
Plain English explanation of Big O

I have been doing programing for 4 years now, but i never paid attentions to what time complexity is closely. i have a interview tomorrow and i know they will be asking me questions on it.Can anyone help me understand time complexity in simple terms with example?By looking at the code how can we decide if its complexity is O(n) or O(log n) O(n) etc?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

要走干脆点 2024-10-23 04:07:51

这是一个一般建议:

如果有一次迭代,并且迭代变量线性递增,那么它的复杂度为 O(n)
例如,

for(i=0;i<n;i++) //O(n)
for(i=0;i<n;i = i + 4) // still O(n)

如果迭代变量以几何方式递增,那么它的时间复杂度为 O(log n)。

例如

for(i=1;i<n;i = i * 2) //O(log n)

,请注意,实现不必使用循环,它们可以使用递归来实现。

如果存在嵌套循环,其中一个的复杂度为 O(n),另一个的复杂度为 O(logn),则总体复杂度为 O(nlogn);

例如,

for(i=0;i<n;i++) // O(n)
 for(j=1;j<n;j=j*3) // O(log n)
//Overall O(nlogn)

这只是手指交叉指南。一般来说,你必须有良好的概念才能推导出复杂性。这就是为什么他们被要求测试你的分析能力和概念。

Here is a general suggestion:

If there is a single iteration, and the iterative variable is incrementing linearly then it's O(n)
e.g.

for(i=0;i<n;i++) //O(n)
for(i=0;i<n;i = i + 4) // still O(n)

If the iterative variable is incremented geometrically, then it's O(log n)

e.g

for(i=1;i<n;i = i * 2) //O(log n)

Note that, the implementations don't have to be using loops, they maybe implemented using recursion.

If there is nested loop, where one has a complexity of O(n) and the other O(logn), then overall complexity is O(nlogn);

e.g

for(i=0;i<n;i++) // O(n)
 for(j=1;j<n;j=j*3) // O(log n)
//Overall O(nlogn)

This is only a finger cross guideline. In general, you have to have good concept to derive the complexity. That is why they are asked, to test your analytical ability and concept.

甜是你 2024-10-23 04:07:51

您正在进入一个复杂的主题;-) 在大学里,您花了很长时间研究 O 表示法背后的理论。我总是倾向于归结为以下简化:

不包含任何循环的算法(例如:将文本写入控制台、从用户获取输入、将结果写入控制台)是 O(1),无论有多少步骤。执行算法所需的“时间”是恒定的(这就是 O(1) 的含义),因为它不依赖于任何数据。

逐一迭代项目列表的算法的复杂度为 O(n)(n 是列表中项目的数量)。如果它在连续循环中迭代列表两次,它仍然是 O(n),因为执行算法的时间仍然仅取决于项目的数量。

具有两个嵌套循环的算法,其中内部循环在某种程度上依赖于外部循环,属于 O(n^x) 类(取决于嵌套循环的数量)。

排序字段上的二分搜索算法属于 O(log(n)) 类,因为每一步项目数量都会减少一半。

上面的内容可能不是很精确,但这就是我试图记住一些重要价值观的方法。仅通过查看代码来确定复杂性并不总是那么容易。

对于进一步和更详细(和更正确)的阅读,大卫·赫弗南(David Heffernan)在他的评论中提到的问题似乎非常合适。

You're moving into a complex topic here ;-) At university, you spend ages on the theory behind the O-notation. I always tended to come down to the following simplification:

An algorithm that does not contain any loops (for example: Write Text to Console, Get Input From User, Write Result To Console) is O(1), no matter how many steps. The "time" it takes to execute the algorithm is constant (this is what O(1) means), as it does not depend on any data.

An algorithm that iterates through a list of items one by one has complexity O(n) (n being the number of items in the list). If it iterates two times through the list in consecutive loops, it is still O(n), as the time to execute the algorithm still depends on the number of items only.

An algorithm with two nested loops, where the inner loop somehow depends on the outer loop, is in the O(n^x) class (depending on the number of nested loops).

An binary search algorithm on a sorted field is in the O(log(n)) class, as the number of items is reduced by half in every step.

The above may not be very precise, but this is how I tried to remember some of the important values. From just looking at code, determining the complexity is not always easy.

For further and more detailed (and more correct) reading, the question David Heffernan linked to in his comment seems quite suitable.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文