计算 3D 平面的斜率

发布于 2024-10-16 03:16:42 字数 312 浏览 1 评论 0原文

我有一组代表不同平面特征的 (X,Y,Z) 点。我需要使用法向量计算每个平面的斜率。 我认为斜率是由每个平面的法线向量(NV)和假想水平面的 NV 之间的角度给出的。假设我使用的平面方程是; Ax+By+c=z。然后我猜我的平面的法向量是(a,b,-1)。对于我的平面方程,假想水平面的方程应该是什么?我认为水平面方程是z=c。因此,法向量为 (0,0,-1)。这是正确的吗? 那么我的平面与水平面之间的角度是; cos^(-1)⁡〖(a.0+b.0+(-1).1)/(√(〖a1〗^2+〖b1〗^2+〖c1〗^2 ).√(0 ^2+0^2+1^2 ))〗

正确吗?请评论我并给我正确的方程式。

I have a set of (X,Y,Z) points representing different planar features. I need to calculate the slope of each plane using normal vectors.
i think slope is given by the angle between normal vector (NV) of each plane and NV of imaginary horizontal plane. Assume, the plane equation that I use is; Ax+By+c=z. Then i guess the normal vector of my plane is (a,b, -1). For my plane equation, what should be the equation of imaginary horizontal plane? I think equation of horizontal plane is z=c. Hence, the normal vector is (0,0,-1). Is this correct?
Then the angle between my plane and the horizontal plane is;
cos^(-1)⁡〖(a.0+b.0+(-1).1)/(√(〖a1〗^2+〖b1〗^2+〖c1〗^2 ).√(0^2+0^2+1^2 ))〗

Is that correct? please comment me and give me the correct equation.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

为人所爱 2024-10-23 03:16:42

是的,这基本上是正确的,但是您在替换角度表达式时犯了一些小错误。角度为 cos^{-1} [(a * 0 + b * 0 + (-1) * (-1) / (√{a^2 + b^2 + (-1)^2} * √{ 0^2+0^2+(-1)^2}] = cos^{-1}(1/√{a^2 + b^2 + 1})

Yes, that's mostly correct, but you've made some small mistakes substituting into the expression for the angle. The angle is cos^{-1} [(a * 0 + b * 0 + (-1) * (-1) / (√{a^2 + b^2 + (-1)^2} * √{0^2+0^2+(-1)^2}] = cos^{-1}(1/√{a^2 + b^2 + 1})

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文