<= 与 <证明大O符号时

发布于 2024-10-15 23:18:43 字数 330 浏览 8 评论 0 原文

我们刚刚开始在课堂上学习大O。我理解这样一个一般概念:如果存在两个常数 c,k,那么对于所有 x>k |f(x)|<=c|g(x)| , f(x) 是 g(x) 的大 o 。我有一个问题是否需要我们包含 <= 来签名,或者是否只需将 <= 就足够了?符号?

例如: 假设f(x)=17x+11,我们要证明这是O(x^2)。 然后,如果我们取 c=28 且 x>k=1,我们就知道 17x+11<=28x^2。因此,既然我们知道 x 将始终大于 1,这意味着 28x^2 将始终大于 17x+11。那么,我们真的需要包含等号(<=)还是只写(<)就可以了?

提前致谢。

We just started learning big-o in class. I understand the general concept that f(x) is big-o of g(x) if there exists two constants c,k such that for all x>k |f(x)|<=c|g(x)|. I had a question whether or not it is required that we include the <= to sign or whether it is just sufficient to put the < sign?

For example:
suppose f(x)=17x+11 and we are to prove that this is O(x^2).
Then if we take c=28 and x>k=1 we know that 17x+11<=28x^2. So since we know that x will always be greater than 1 this implies that 28x^2 will always be greater than 17x+11. So, do we really need to include the equal sign (<=) or is it okay if we just write (<)?

Thanks in advance.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

夏尔 2024-10-22 23:18:43

来自 |f (x)| ≤ c |g (x)|对于某些实值c,可以得出|f (x)| < (c + e) |g (x)|对于所有e> 0.

由此可见,存在 c' = (c + e) 使得 |f ( x)| < c' |g (x)|,因此您可以使用 而不是 ≤。

更实际的是,如果你能证明 |f (x)| < c |g (x)|,≤ 部分很简单。

From |f (x)| ≤ c |g (x)| for some real-valued c, it follows that |f (x)| < (c + e) |g (x)| for all e > 0.

From that it follows that there exists c' = (c + e) such that |f (x)| < c' |g (x)|, so you can use < instead of ≤.

More practically, if you can prove |f (x)| < c |g (x)|, the ≤ part follows trivially.

甜`诱少女 2024-10-22 23:18:43

如果您显示 x < y 那么你也显示了 x <= y。所以这没有什么区别。

If you have shown x < y then you have also shown x <= y. So it makes no difference.

温柔戏命师 2024-10-22 23:18:43

是否需要包含 <= 符号,或者仅将 <= 符号就足够了。标志?

我认为,您在这里问的问题有两个略有不同的问题:

  • 如果您可以演示 ck ,使得对于所有 x > ; k |f(x)| <= c|g(x)|,那么简单地说,您演示了 ck,这样对于所有<代码>x> k |f(x)| < c|g(x)|。因此,显示 <足够了,但是:

  • 正如您所说,能够说出 的实际要求f(x) = O(g(x)) 是找到一个 ck 使得对于所有 x > k |f(x)| <= c|g(x)|。如果我们能做的最好的事情就是找到一个ck,这样对于所有x > k |f(x)| = c|g(x)|,那么我们还没有满足您的 < 条件,但我们已经做了足够的工作来显示 f( x) = O(g(x))。因此,显示 < 并不是必要

whether or not it is required that we include the <= sign or whether it is just sufficient to put the < sign?

There are two slightly different things you're asking here, I think:

  • If you can demonstrate a c and k such that for all x > k |f(x)| <= c|g(x)|, then trivially you have also demonstrated a c and k such that for all x > k |f(x)| < c|g(x)|. So showing < is sufficient, but:

  • As you've stated, the actual requirement for being able to say f(x) = O(g(x)) is to find a c and k such that for all x > k |f(x)| <= c|g(x)|. If the best we can do is find a c and k such that for all x > k |f(x)| = c|g(x)|, then we haven't met your < condition, but we have done enough to show f(x) = O(g(x)). So showing < is not necessary

尘曦 2024-10-22 23:18:43

您不能将 <= 替换为 <在定义中。

任何经常无限为零的函数 f 都是 O(f),但如果将 <= 替换为 <,则不是。

例如,如果 x 是奇数,则令 f(x) = x;如果 x 是偶数,则令 f(x) = x。那么 f 是 O(f),因为对于所有 x,f(x) <= f(x)。然而,不存在满足 f(x) < 的 c。 cf(x) 对于所有大的 x,因为对于所有偶数 x 两边都是 0。

You can't replace <= with < in the definition.

Any function f that's infinitely often zero is O(f), but not if you replace <= with <.

For example, let f(x) = x if x is odd, 0 if x is even. Then f is O(f) because f(x) <= f(x) for all x. However, there's no c such that f(x) < cf(x) for all large x, because both sides are 0 for all even x.

你列表最软的妹 2024-10-22 23:18:43

使用 < 代替 的,尽管很明显它们在某些情况下是相同的,因为 是 Big-O 表示法定义的一部分。

另一方面,定义: 0 ≤ f(n) < cg(n) 属于不同的类(Little-o 表示法),该类包含在 Big-O 类中

It is not ok to use < instead of , although it is obvious that they are -in some cases- identical, because is part of the Big-O notation definition.

On the other hand, the definition: 0 ≤ f(n) < cg(n) belongs to a different class (the Little-o notation) which is included in the Big-O class

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文