线性方程的快速近似解?

发布于 2024-10-15 21:34:45 字数 331 浏览 6 评论 0原文

我需要求解 N 个线性方程组作为数值优化器的中间步骤。 AFAIK 相当简单的算法精确地做到这一点是 O(N^3) (尽管我在一些数学论文中看到了一个非常复杂的算法,可以用 O(N^2.8) 和一个巨大的常数来完成)。在某些情况下,N 很大,即几千。

有没有什么好方法可以在小于 O(N^3) 的时间内获得线性方程组的近似解?

编辑:

如果有帮助的话,这里有一些更多的细节。

  1. 我的矩阵是对称的,而不是稀疏的。

  2. 这是 Newton-Raphson 的二阶导数矩阵。我正在尝试在 2000 维空间中优化某些内容。

I need to solve a system of N linear equations as an intermediate step in a numerical optimizer. AFAIK reasonably simple algorithms for doing so exactly are O(N^3) (though I saw a horibly complicated one in some math paper that could do it in something like O(N^2.8) with a huge constant). In some cases N is huge, i.e. several thousand.

Is there any good way to get a decent approximate solution to a system of linear equations in less than O(N^3)?

Edit:

Here are some more details if it helps at all.

  1. My matrix is symmetric, and not sparse.

  2. It's the second derivative matrix from Newton-Raphson. I'm trying to optimize something in a 2000-dimensional space.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

凡尘雨 2024-10-22 21:34:45

迭代方法有 Jacobi、Gauss-Seidel、cg、GMRES 等。

There are iterative methods like Jacobi, Gauss-Seidel, cg, GMRES etc.

蓝颜夕 2024-10-22 21:34:45

对于对称矩阵,共轭梯度法实现起来很简单,并且会击败大多数其他迭代方法(例如高斯-赛德尔,SOR)。主循环由矩阵向量乘法和一些其他向量运算组成。

一旦你开始工作,你可以使用预处理来进一步提高收敛性。

For a symmetric matrix, the conjugate gradient method is simple to implement, and will beat most other iterative methods (e.g. Gauss-Seidel, SOR). The main loop consists of a matrix-vector multiply and a few other vector operations.

Once you've got it working, you can use preconditioning to improve the convergence even more.

一梦浮鱼 2024-10-22 21:34:45

是的,如果你从它们的系数得到的矩阵是稀疏的。例如,如果您有一个三对角矩阵,则可以使用“Rightlay”方法(保加利亚语,不确定确切的翻译),该矩阵的运算时间为 O(N)。还有其他算法仍然是 O(N^3),但如果矩阵符合它们所需的某些不变量(稀疏、对角占优、三角形等),则可以获得令人难以置信的结果。

如果您坚持使用基于不变量的特定方法,那么进一步加快速度的唯一方法就是使用多线程。

尝试 搜索。

Yes, if the matrix you get from their coefficients is sparse. There's the method of the "Right lay" (in Bulgarian, not sure about the exact translation) if you have a tri-diagonal matrix, for instance, which operates in O(N). There are other algorithms that are still O(N^3) but achieve incredible results if the matrix conforms to some invariant that they require (sparse, diagonal-prevailing, triangular, etc.).

If you're stuck to a specific method based on your invariant, the only way to further speed things up is to go multi-threaded.

Try this search.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文