SSE归一化比简单近似慢?

发布于 2024-10-15 11:55:22 字数 1701 浏览 12 评论 0原文

我正在尝试标准化 4d 向量。

我的第一个方法是使用 SSE 内在函数 - 它可以将我的向量算术速度提高 2 倍。 这是基本代码:(v.v4 是输入)(使用 GCC)(所有这些都是内联的)

//find squares
v4sf s = __builtin_ia32_mulps(v.v4, v.v4);
//set t to square
v4sf t = s;
//add the 4 squares together
s   = __builtin_ia32_shufps(s, s, 0x1B);
t      = __builtin_ia32_addps(t, s);
s   = __builtin_ia32_shufps(s, s, 0x4e);
t      = __builtin_ia32_addps(t, s);
s   = __builtin_ia32_shufps(s, s, 0x1B);
t      = __builtin_ia32_addps(t, s);
//find 1/sqrt of t
t      = __builtin_ia32_rsqrtps(t);
//multiply to get normal
return Vec4(__builtin_ia32_mulps(v.v4, t));

我检查反汇编,它看起来像我所期望的那样。我没有看到任何大问题。

无论如何,然后我使用近似值尝试了它:(我从谷歌得到这个)

float x = (v.w*v.w) + (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i>>1); // give initial guess y0
x = *(float*)&i; // convert bits back to float
x *= 1.5f - xhalf*x*x; // newton step, repeating this step
// increases accuracy
//x *= 1.5f - xhalf*x*x;
return Vec4(v.w*x, v.x*x, v.y*x, v.z*x);

它的运行速度比 SSE 版本稍快! (大约快 5-10%)它的结果也非常准确 - 我会说在查找长度时为 0.001! 但是.. 由于类型双关,GCC 给了我那个蹩脚的严格别名规则。

所以我修改了它:

union {
    float fa;
    int ia;
};
fa = (v.w*v.w) + (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
float faHalf = 0.5f*fa;
ia = 0x5f3759df - (ia>>1);
fa *= 1.5f - faHalf*fa*fa;
//fa *= 1.5f - faHalf*fa*fa;
return Vec4(v.w*fa, v.x*fa, v.y*fa, v.z*fa);

现在修改后的版本(没有警告)运行速度较慢!它的运行速度几乎是 SSE 版本运行速度的 60%(但结果相同)!这是为什么呢?

所以这里有一个问题:

  1. 我的 SSE 实施正确吗?
  2. SSE 真的比正常的 fpu 操作慢吗?
  3. 为什么第三个代码慢这么多?

I am trying to normalize a 4d vector.

My first approch was to use SSE intrinsics - something that provided a 2 times speed boost to my vector arithmetic.
Here is the basic code: (v.v4 is the input) (using GCC) (all of this is inlined)

//find squares
v4sf s = __builtin_ia32_mulps(v.v4, v.v4);
//set t to square
v4sf t = s;
//add the 4 squares together
s   = __builtin_ia32_shufps(s, s, 0x1B);
t      = __builtin_ia32_addps(t, s);
s   = __builtin_ia32_shufps(s, s, 0x4e);
t      = __builtin_ia32_addps(t, s);
s   = __builtin_ia32_shufps(s, s, 0x1B);
t      = __builtin_ia32_addps(t, s);
//find 1/sqrt of t
t      = __builtin_ia32_rsqrtps(t);
//multiply to get normal
return Vec4(__builtin_ia32_mulps(v.v4, t));

I check the disassembly and it looks like how I would expect. I don't see any big problems there.

Anyways, then I tried it using an approximation: (I got this from google)

float x = (v.w*v.w) + (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
float xhalf = 0.5f*x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i>>1); // give initial guess y0
x = *(float*)&i; // convert bits back to float
x *= 1.5f - xhalf*x*x; // newton step, repeating this step
// increases accuracy
//x *= 1.5f - xhalf*x*x;
return Vec4(v.w*x, v.x*x, v.y*x, v.z*x);

It is running slightly faster than the SSE version! (about 5-10% faster) It's results also are very accurate - I would say to 0.001 when finding length!
But.. GCC is giving me that lame strict aliasing rule because of the type punning.

So I modify it:

union {
    float fa;
    int ia;
};
fa = (v.w*v.w) + (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
float faHalf = 0.5f*fa;
ia = 0x5f3759df - (ia>>1);
fa *= 1.5f - faHalf*fa*fa;
//fa *= 1.5f - faHalf*fa*fa;
return Vec4(v.w*fa, v.x*fa, v.y*fa, v.z*fa);

And now the modified version (with no warnings) is running slower!! It's running almost 60% the speed that SSE version runs (but same result)! Why is this?

So here is question(s):

  1. Is my SSE implentation correct?
  2. Is SSE really slower than normal fpu operations?
  3. Why the hell is the 3rd code so much slower?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

情绪失控 2024-10-22 11:55:22

我是个傻瓜 - 我意识到我在基准测试时运行了 SETI@Home。我猜它正在扼杀我的 SSE 表现。将其关闭并使其运行速度提高两倍。

我还在 AMD athlon 上测试了它并得到了相同的结果 - SSE 更快。

至少我修复了 shuf 错误!

I am a dope - I realized I had SETI@Home running while benchmarking. I'm guessing it was killing my SSE performance. Turned it off and got it running twice as fast.

I also tested it on an AMD athlon and got the same results - SSE was faster.

At least I fixed the shuf bug!

绿光 2024-10-22 11:55:22

这是我能想到的最有效的汇编代码。您可以将其与编译器生成的内容进行比较。假设输入和输出位于 XMM0 中。

       ; start with xmm0 = { v.x v.y v.z v.w }
       movaps  %xmm0, %mm1         ; save it till the end
       mulps   %xmm0, %xmm0        ; v=v*v
       pshufd  $1, %xmm0, %xmm1    ; xmm1 = { v.y v.x v.x v.x }
       addss   %xmm0, %xmm1        ; xmm1 = { v.y+v.x v.x v.x v.x }
       pshufd  $3, %xmm0, %xmm2    ; xmm2 = { v.w v.x v.x v.x }
       movhlps %xmm0, %xmm3        ; xmm3 = { v.z v.w ? ? }
       addss   %xmm1, %xmm3        ; xmm3 = { v.y+v.x+v.z v.x ? ? }
       addss   %xmm3, %xmm2        ; xmm2 = { v.y+v.x+v.z+v.w v.x v.x v.x }
       rsqrtps  %xmm2, %xmm1        ; xmm1 = { rsqrt(v.y+v.x+v.z+v.w) ... }
       pshufd  $0, %xmm1, %xmm1    ; xmm1 = { rsqrt(v.y+v.x+v.z+v.w) x4 }
       mulps   %xmm1, %xmm0       
       ; end with xmm0 = { v.x*sqrt(...) v.y*sqrt(...) v.z*sqrt(...) v.w*sqrt(...) }

Here is the most efficient assembly code i can think of. You can compare this to what your compiler generates. assume the input and output are in XMM0.

       ; start with xmm0 = { v.x v.y v.z v.w }
       movaps  %xmm0, %mm1         ; save it till the end
       mulps   %xmm0, %xmm0        ; v=v*v
       pshufd  $1, %xmm0, %xmm1    ; xmm1 = { v.y v.x v.x v.x }
       addss   %xmm0, %xmm1        ; xmm1 = { v.y+v.x v.x v.x v.x }
       pshufd  $3, %xmm0, %xmm2    ; xmm2 = { v.w v.x v.x v.x }
       movhlps %xmm0, %xmm3        ; xmm3 = { v.z v.w ? ? }
       addss   %xmm1, %xmm3        ; xmm3 = { v.y+v.x+v.z v.x ? ? }
       addss   %xmm3, %xmm2        ; xmm2 = { v.y+v.x+v.z+v.w v.x v.x v.x }
       rsqrtps  %xmm2, %xmm1        ; xmm1 = { rsqrt(v.y+v.x+v.z+v.w) ... }
       pshufd  $0, %xmm1, %xmm1    ; xmm1 = { rsqrt(v.y+v.x+v.z+v.w) x4 }
       mulps   %xmm1, %xmm0       
       ; end with xmm0 = { v.x*sqrt(...) v.y*sqrt(...) v.z*sqrt(...) v.w*sqrt(...) }
乖乖公主 2024-10-22 11:55:22

我的猜测是,第三个版本较慢,因为编译器决定将联合放入内存变量中。在强制转换的情况下,它可以将值从一个寄存器复制到另一个寄存器。您只需查看生成的机器代码即可。

至于为什么上交所不准确,我没有答案。如果您能提供真实的数字,将会有所帮助。如果大小为 1 的向量上的差异为 0.3,那就太离谱了。

My guess is that the 3rd version is slower because the compiler decides to put the union in a memory variable. In the cast case, it can copy the values from register to register. You can just look at the generated machine code.

As to why SSE is inaccurate, I don't have an answer. It would help if you can give real numbers. If the difference is 0.3 on a vector of size 1, that would be outrageous.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文