迭代预测动态模型

发布于 2024-10-14 22:41:16 字数 1626 浏览 9 评论 0原文

我已经编写了一个函数来迭代预测使用 dyn 包构建的模型,并且我想要一些关于它的反馈。有更好的方法吗?有人为 dyn 类(或 dynlm 类)编写了规范的“预测”方法,还是我正在冒险进入未知领域?

ipredict <-function(model, newdata, interval = "none",
        level = 0.95, na.action = na.pass, weights = 1) {
 P<-predict(model,newdata=newdata,interval=interval,
  level=level,na.action=na.action,weights=weights)
 for (i in seq(1,dim(newdata)[1])) {
  if (is.na(newdata[i])) {
   if (interval=="none") {
    P[i]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i]
    newdata[i]<-P[i]
   }
   else{
    P[i,]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i,]
    newdata[i]<-P[i,1]
   }
  }
 }
 P_end<-end(P)[1]*frequency(P)+(end(P)[2]-1) #Convert (time,period) to decimal time
 P<-window(P,end=P_end-1*frequency(P)) #Drop last observation, which is NA
 return(P)
}

用法示例:

library(dyn)
y<-arima.sim(model=list(ar=c(.9)),n=10) #Create AR(1) dependant variable
A<-rnorm(10) #Create independant variables
B<-rnorm(10)
C<-rnorm(10)
Error<-rnorm(10)
y<-y+.5*A+.2*B-.3*C+.1*Error #Add relationship to independant variables 
data=cbind(y,A,B,C)

#Fit linear model
model.dyn<-dyn$lm(y~A+B+C+lag(y,-1),data=data)
summary(model.dyn)

#Forecast linear model
A<-c(A,rnorm(5))
B<-c(B,rnorm(5))
C<-c(C,rnorm(5))
y=window(y,end=end(y)+c(5,0),extend=TRUE)
newdata<-cbind(y,A,B,C)
P1<-ipredict(model.dyn,newdata)
P2<-ipredict(model.dyn,newdata,interval="prediction")

#Plot
plot(y)
lines(P1,col=2)

I've written a function to iteratively forecast models built using the package dyn, and I'd like some feedback on it. Is there a better way to do this? Has someone written canonical "forecast" methods for the dyn class (or dynlm class), or am I venturing into uncharted territory here?

ipredict <-function(model, newdata, interval = "none",
        level = 0.95, na.action = na.pass, weights = 1) {
 P<-predict(model,newdata=newdata,interval=interval,
  level=level,na.action=na.action,weights=weights)
 for (i in seq(1,dim(newdata)[1])) {
  if (is.na(newdata[i])) {
   if (interval=="none") {
    P[i]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i]
    newdata[i]<-P[i]
   }
   else{
    P[i,]<-predict(model,newdata=newdata,interval=interval,
     level=level,na.action=na.action,weights=weights)[i,]
    newdata[i]<-P[i,1]
   }
  }
 }
 P_end<-end(P)[1]*frequency(P)+(end(P)[2]-1) #Convert (time,period) to decimal time
 P<-window(P,end=P_end-1*frequency(P)) #Drop last observation, which is NA
 return(P)
}

Example usage:

library(dyn)
y<-arima.sim(model=list(ar=c(.9)),n=10) #Create AR(1) dependant variable
A<-rnorm(10) #Create independant variables
B<-rnorm(10)
C<-rnorm(10)
Error<-rnorm(10)
y<-y+.5*A+.2*B-.3*C+.1*Error #Add relationship to independant variables 
data=cbind(y,A,B,C)

#Fit linear model
model.dyn<-dyn$lm(y~A+B+C+lag(y,-1),data=data)
summary(model.dyn)

#Forecast linear model
A<-c(A,rnorm(5))
B<-c(B,rnorm(5))
C<-c(C,rnorm(5))
y=window(y,end=end(y)+c(5,0),extend=TRUE)
newdata<-cbind(y,A,B,C)
P1<-ipredict(model.dyn,newdata)
P2<-ipredict(model.dyn,newdata,interval="prediction")

#Plot
plot(y)
lines(P1,col=2)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

忆悲凉 2024-10-21 22:41:16

R 核心中的 predict.Ariman.ahead 参数来预测前进 n 步,看来这就是您正在寻找的for 与 dyn 结合使用,但 predict.dyn 目前不支持该功能。要获得这种效果,必须像您所做的那样迭代调用 dyn$whatever

predict.Arima in the core of R has the n.ahead argument to forecast n steps ahead and it seems that that is what you are looking for in conjunction with dyn but predict.dyn does not currently support that functionality. To get that effect one must iteratively call dyn$whatever as you are doing.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文