图算法、近似算法
删除随机图的dfs树的叶子后,假设剩下的边数为|S|,我们能否证明该图的匹配将为|S|/2?
After removing the leaves of the dfs tree of a random graph , suppose the number of edges left is |S|, can we prove that the matching for that graph will be |S|/2?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这是一个证明。
定理:设
T
为任何具有i
叶子的树。T
中有一个(|T|-i)/2
匹配。证明:通过归纳法。如果
T
是一棵有i
个叶子的树,则令T'
为从T
T.T'
有j <= i
叶子。同样,让T''
为从T'
中删除所有叶子后生成的树。T''
有k <= j
叶子。通过归纳法将定理应用于
T''
,因此存在大小匹配(|T''|-k)/2 = (|T|-ijk)/2T''
中的代码>。边集TT'
至少包含j
条边,这些边不与T''
中的任何边相关,也不与彼此相关(选择一个)关联于T'
中的每个叶子),因此添加这些边以在T
中进行大小为(|T|-i+jk)/2< 的匹配/代码>。由于
j >= k
,这至少是(|T|-i)/2
边。量子ED。我已经掩盖了 /2 的地板/天花板问题,但我怀疑如果将它们包括在内,证明仍然有效。
Here's a proof.
Theorem: Let
T
be any tree withi
leaves. There is a(|T|-i)/2
matching inT
.Proof: by induction. If
T
is a tree withi
leaves, letT'
be the tree that results when removing all the leaves fromT
.T'
hasj <= i
leaves. Similarly, letT''
be the tree that results when removing all the leaves fromT'
.T''
hask <= j
leaves.Apply the theorem by induction to
T''
, so there exists a matching of size(|T''|-k)/2 = (|T|-i-j-k)/2
inT''
. The set of edgesT-T'
contains at leastj
edges that are not incident to any edge inT''
or to each other (pick one incident to each leaf inT'
), so add those edges to make a matching inT
of size(|T|-i+j-k)/2
. Sincej >= k
, this is at least(|T|-i)/2
edges. QED.I've glossed over the floor/ceiling issues with the /2, but I suspect the proof would still work if you included them.