什么工具/库可以帮助我生成和测试神经网络模型,该模型可以使用 X*Y int 数组作为输入,以 N*4 int 数组作为输出?
我想制作简单的神经网络,从给定的灰度二维数组
[[1 1 1]
[0 0 0]
[1 1 1]]
可以给我线坐标
[[1 2]
[3 2]]
我有一个 C++ 程序,其中有一个真正的算法来计算灰度图像和大量图像的线。我需要一些带有脚本语言的神经网络工具,以便我可以生成一个程序来教授和生成神经网络。所以我可以创建一些具有如下结构的程序:
generateNN(NN);
NN.provideData(WxHGSImageArray);
NN.provideDesiredResult(2PointsLineArray);
那么...是否有任何这样的用于生成神经网络的 C++/C 库或任何带有脚本语言的可编程工具?
这里的主要问题是 - 什么工具/库支持创建可以采用 X*Y 数组并输出 N*4 数组(N - 图像上找到的行数)的系统? (顺便说一句,不同图像的 X 和 Y 是不同的)
I want to make simple neural network that from given gray-scale 2d arrays like
[[1 1 1]
[0 0 0]
[1 1 1]]
would give me line coordinates
[[1 2]
[3 2]]
I have a C++ program that has a real algorithm in it to compute lines from gray-scale images and a large set of images. I need some NN tool wit scripting language so that I could generate a program to teach and generate NN. so I could create some programm with structure like:
generateNN(NN);
NN.provideData(WxHGSImageArray);
NN.provideDesiredResult(2PointsLineArray);
So... Is there any such C++/C lib for generation of NNs or any programmable tool with scripting language?
Main problem here is - what tool/lib supports creation of systems that can take X*Y arrays and output N*4 arrays (N - number of lines found on image)? (btw X and Y are different for different images)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
尝试SNNS。它是一个很棒的用于模拟神经网络的软件包。该工具套件的 JNNS 版本也可用。它称为 JavaNNS。
我使用 SNNS 和 JavaNNS 进行神经网络模拟,它非常有用。它的学习曲线很陡峭,但绝对值得尝试!
Try SNNS. It is a great software package for simulating neural networks. A JNNS version of the toolsuite is also available. It is called JavaNNS.
I've used the SNNS and JavaNNS for neural networks simulations and it was very useful. It has a steep learning curve, but it's certainly worth trying!
这是一个非常全面的神经网络模拟器列表:
神经网络模拟器比较
Here is a quite comprehensive list of nn simulators:
Comparison of Neural Network Simulators
如果您已经拥有一个熟悉的 C++ 神经网络库,您可以尝试为 lua 编写一个小型绑定(看看 toalua++)或 Python(SWIG 是一个不错的选择)。
当然,如果 API 太大可能就得不偿失了。
If you already have a C++ neural network library you're comfortable with, you might try writing a small binding for lua (take a look at toalua++ in this case) or Python (SWIG is a good option).
Of course, if the API is too big with might not be worth the effort.