AWStats 还是 Google Analytics?哪个更准确?
我的托管服务提供商提供了 AWStats。我也有谷歌分析设置。但两者显示的统计数据不同,我应该相信谁?这两个哪个更准确?我应该使用其他东西来获得准确的统计数据吗?
I have AWStats provided my hosting service provider. I have google analytics as well setup. But both show different statistics whom should I trust? Whats more accurate of these two? Should I use something else for getting accurate statistics.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(4)
他们以不同的方式进行衡量。 AWStats 使用分析的服务器日志,其中包括爬虫程序和机器人,以及禁用 JavaScript 的最终用户和 Google Analytics 选择退出的用户,而 Google Analytics 均不会测量这些日志。
AWStats 根据服务器日志中来自其 IP 地址的点击组合构建访问,因此它们不会跟踪从多个位置访问或拥有动态 IP 地址的用户,并且会将来自同一 IP 地址的多个用户计算为是同一个访客。 Google Analytics 使用特定于浏览器的 cookie 在多个位置多次跟踪访问者。两者都有增加或减少数字的倾向。因此,服务器日志可以将同一网络上的多个人算作同一个人,但当您四处走动时,它们也会重复计数,并且不知道如何处理动态 IP 地址。 Google Analytics(分析)无法通过多个浏览器跟踪一个人。
因此,一般而言,正确的答案是,没有任何分析跟踪是 100% 的,这些数字应始终被视为近似值,并且您查看的每个数字都应在其跟踪方式的背景下考虑,并且仅与在类似情况下收集的数字。总的趋势是 AWStats 夸大了数字,而 Google Analytics 低估了数字,但这并不是一条铁定的规则。
They measure in different ways. AWStats uses analyzed server logs, and they include crawlers and bots, as well as end users with JavaScript disabled and Google Analytics opt-out users, none of which Google Analytics measures.
AWStats constructs visits from a combination of hits in the server logs from their IP address, so they don't follow a user who visits from multiple locations, or who has a dynamic IP address, and they count multiple users from the same IP address as being the same visitor. Google Analytics uses browser-specific cookies to track visitors multiple times in multiple locations. Both can have a tendency to either inflate or deflate numbers. So, server logs could count multiple people on the same network as the same person, but they also double count as you move around, and have no idea how to deal with dynamic IP addresses. Google Analytics can't track one person across their multiple browsers.
So, the right answer, in general, is that no analytics tracking is ever 100%, that the numbers should always be treated as approximations, and that every number you look at should be considered in the context of how its tracked and only compared to numbers gathered in similar contexts. The general trend is that AWStats overstates numbers and that Google Analytics understates them, but that's not an ironclad rule.
我在我的网站上设置了一个测试,通过 Google 与 AWStats 比较唯一用户。在网站上,我制作了一个查看计数器,存储唯一的 IP 地址,并在几个小时内测量单个页面的点击量。然后,我查看了 ip 日志并删除了所有爬虫,并将其与 AWStats 和 Google 的测量结果进行了比较。
观看计数器测出了我所说的 100%
AWStats 占观看次数的 125-150% 左右
Google 占浏览量的 25-40%
这是一致的。我的结论是,Google 似乎总是少报,而 AWStats 总是多报。我认为真实的数字介于两者之间,但比 Google 更接近 AWStats。因此,如果 Google 说您获得 100 个唯一身份,而 AWStats 说 500 个,我个人认为实际数量接近 300 个。这并不完全科学,其他人复制此测试会很棒。
I set up a test on my website to compare unique users via Google vs AWStats. On the website I made a view counter that stored unique IP addresses, and measured the hits for a single page, within a few hours. I then looked through the ip logs and removed any crawlers, and compared this to what AWStats measured and Google.
The view counter measured what I will call 100%
AWStats was around 125-150% of view count
Google was 25-40% of view count
This was/is consistent. My conclusion is that Google seems to always under report and AWStats over report. I think the true figure is somewhere in the middle, but slightly closer to AWStats than Google. So if Google says you get 100 uniques and AWStats says 500, I would personally think the actual amount is closer to 300. This is not completely scientific and it would be great for others to replicate this test.
awstat 不也跟踪图像点击率吗?
因此,如果您的页面有 10 张图片,则每个用户有 10 次点击。
如果是这样的话,仪表似乎非常不准确。
Doesn't awstat track image hits as well?
So if your page has 10 images, that's 10 hits per user.
Seems highly inaccurate gauge if that's the case.
请注意,如果您使用 Cloudflare、Akamai 等内容交付网络 (CDN),Awstats 将不会知道 CDN 处理的任何流量。您将必须依赖 CDN 提供的统计数据,或 Google Analytics 等页面 JavaScript 解决方案。
Note that if you use a Content Delivery Network (CDN) like Cloudflare, Akamai, etc., that Awstats will not be aware of any traffic handled by the CDN. You will have to rely on stats provided by the CDN, or on page javascript solutions like Google Analytics.