查找一个字段的值与另一字段中数据的最大值相匹配

发布于 2024-10-13 09:14:21 字数 909 浏览 6 评论 0原文

我正在尝试编写一个查询来获取与另一个字段(或多个字段)的最大值关联的一个字段的值。假设我有以下数据表:

OrderID CustomerID  OrderDate   LocationID          
1       4           1/1/2001    1001
2       4           1/2/2001    1003
3       4           1/3/2001    1001
4       5           1/4/2001    1001
5       5           1/5/2001    1001
6       5           1/6/2001    1003
7       5           1/7/2001    1002
8       5           1/8/2001    1003
9       5           1/8/2001    1002

CustomerID 分组,我想获取最大 OrderDate,然后获取与以下内容关联的 LocationID最大OrderDate。如果有多条记录共享最大订单日期,则从具有最大日期的记录中获取与最大 OrderID 关联的 LocationID

最终的数据集应该如下所示:

CustomerID  OrderDate   LocationID      
4           1/3/2001    1001
5           1/8/2001    1002

我一直在尝试编写一个包含大量嵌套子查询和丑陋连接的查询,但我并没有真正取得任何进展。我需要写什么SQL来帮助我得到这个结果。

I'm trying to write a query that gets the value of one field that's associated with the maximum value of another field (or fields). Let's say I have the following table of data:

OrderID CustomerID  OrderDate   LocationID          
1       4           1/1/2001    1001
2       4           1/2/2001    1003
3       4           1/3/2001    1001
4       5           1/4/2001    1001
5       5           1/5/2001    1001
6       5           1/6/2001    1003
7       5           1/7/2001    1002
8       5           1/8/2001    1003
9       5           1/8/2001    1002

Grouping by CustomerID, I want to get the maximum OrderDate and then the LocationID associated with whatever is the maximum OrderDate. If there are several records that share the maximum order date, then take the LocationID associated with the maximum OrderID from among those records with the maximum date.

The final set of data should look like this:

CustomerID  OrderDate   LocationID      
4           1/3/2001    1001
5           1/8/2001    1002

I had been trying to write a query with lots of nested subqueries and ugly joins, but I'm not really getting anywhere. What SQL do I need to write to help me get this result.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

著墨染雨君画夕 2024-10-20 09:14:21
with cte As
(
select *, 
        row_number() over (partition by CustomerID 
                           order by OrderDate desc, OrderId desc) as rn
from yourtable
)
select CustomerID, OrderDate,LocationID
from cte 
where rn=1;
with cte As
(
select *, 
        row_number() over (partition by CustomerID 
                           order by OrderDate desc, OrderId desc) as rn
from yourtable
)
select CustomerID, OrderDate,LocationID
from cte 
where rn=1;
檐上三寸雪 2024-10-20 09:14:21
SELECT
   C.Name,
   C.CustomerID,
   X.*
FROM
   Customers C
   CROSS APPLY (
      SELECT TOP 1 OrderDate, LocationID
      FROM Orders O
      WHERE C.CustomerID = O.CustomerID
      ORDER BY OrderDate Desc, OrderID Desc
   ) X

如果您从“客户”表中提取任何列,这可能会优于其他方法

如果没有,那么仅从订单中提取的 Row_Number 答案可能是最好的。但是,如果您以任何方式受到客户限制,那么CROSS APPLY将再次是最好的。可能会有很大差距。

SELECT
   C.Name,
   C.CustomerID,
   X.*
FROM
   Customers C
   CROSS APPLY (
      SELECT TOP 1 OrderDate, LocationID
      FROM Orders O
      WHERE C.CustomerID = O.CustomerID
      ORDER BY OrderDate Desc, OrderID Desc
   ) X

If you will pull any columns from the Customers table, this will probably outperform other methods.

If not, then the Row_Number answer, pulling only from Orders, will probably be best. But if you restrict by Customer in any way, then the CROSS APPLY will again be best. Possibly by a big margin.

一百个冬季 2024-10-20 09:14:21

技巧是使用子查询作为值,而不是连接:

select customerId,orderDate,locationId
  from orders o1
 where orderDate = (
           select top 1 orderdate
             from orders o2
            where o1.customerId = o2.customerId
            order by orderdate desc
       )

The trick is to use a subquery as a value, not as a join:

select customerId,orderDate,locationId
  from orders o1
 where orderDate = (
           select top 1 orderdate
             from orders o2
            where o1.customerId = o2.customerId
            order by orderdate desc
       )
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文