车牌识别 - 确定颜色范围以进行像素比较

发布于 2024-10-13 05:39:33 字数 502 浏览 5 评论 0原文

经过有关车牌检测的大量工作后,我决定简单地在图像中查找黄色像素的“模式”将是在图像中查找车牌位置的充分方法。目前,我使用各种图形过滤器并检测白色像素图案,但是事实证明这越来越有问题。

现在回答这个问题,我知道“黄色”车牌是基于许多因素,例如亮度、环境。 替代文字 alt text

对此的洞察我需要一个范围来比较,例如:

if(FindIfYellow(GetPixel(x, y) )))

但是我不知道是否使用 RGB 值,特别是单个 RGB 值来确定颜色是否为黄色。最后是否有一个网站或某种信息来定义这些范围?我知道

R:255 重力:255 B:0

是最纯的黄色,但就范围而言我不知道。不管怎样,希望这是一个合理的想法,我发帖的原因是为了确保我没有忽视某些事情,就像我经常做的那样:)。

Well after much work regarding vehicle plate detection, I've decided that simply finding a 'pattern' of yellow pixels within an image would be a sufficient method of finding the location of a license plate within an image. Currently I use various graphic filters and detect white pixel patterns, however this is proving to be more and more problematic.

Now for the question, I'm aware that the 'yellow' are a license plate is based on numerous factors such as brightness, environment.
alt text
alt text

Insight of this I would need a range to compare to, for example:

if(FindIfYellow(GetPixel(x, y)))

However I don't know if to use RGB values, specifically individual RGB values to determine if the color is a shade of yellow. Finally is there a website or information of some sort defining these ranges? I know

R: 255
G: 255
B: 0

Is the purest of yellow, but in terms of range I have no idea. Anyway hopefully it's a resonable idea, and the reason I post is to ensure I haven't overlook something, as I have been doing frequently :).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

留一抹残留的笑 2024-10-20 05:39:34

查看 OpenALPR (http://www.openalpr.com)。它采用不同的方法进行板定位——它使用经过训练的 LBP 模式。除了基于颜色的检测之外,您可能还想使用此库以获得更高的准确性。例如,OpenALPR 可以检测潜在的车牌区域,然后简单地验证一定比例的区域是否呈黄色。

Check out OpenALPR (http://www.openalpr.com). It takes a different approach for plate localization -- it uses trained LBP patterns. You may want to use this library in addition to your color-based detection for even greater accuracy. For example, OpenALPR can detect potential plate regions, and then simply verify that a certain percentage of the area is yellow-ish.

黑凤梨 2024-10-20 05:39:33

使用 CMYK 通道分离 - 让我们对印版进行 OCR!

输入图像描述这里

对其他图像重复该过程

在此处输入图像描述

Using CMYK channel separation - Let's OCR the Plate!

enter image description here

Repeating the process with the other image

enter image description here

半﹌身腐败 2024-10-20 05:39:33

金子是黄色的吗?黄橙黄色是黄橙黄色吗?黄绿色怎么样?

(我的观点是,这对于人类来说是一个模糊的定义,更不用说对于计算机而言......只需确定一个对您来说看起来黄色的范围并坚持下去即可。)

Is gold yellow? Is yellowish-orange yellow? How about yellow-green?

(My point being that this is a fuzzy definition for a human, let alone for a computer... just decide on a range that looks yellow to you and stick with it.)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文