在 3d 中给定点制作最少三角形的算法
具有 3d 中的一组点。如何找到连接这些点的最少三角形组?创建一组至少共享两条边的三角形? (就像一块由三角形组成的带有凹凸的方形薄片)
5x100x500 区域的示例点:
points = [
# Constant Points
(0 , 0 , 0 ),
(0 , 100, 0 ),
(5 , 100, 500),
(1 , 50 , 100),
(2 , 60 , 200),
(3 , 75 , 300),
(4 , 80 , 400),
(5 , 0 , 499),
]
这是绘制的点在轴归一化后的样子:
With a set of points in 3d. How would one go about finding the fewest set of triangles connecting those points; creating a set of triangles all sharing at least two of their sides? (like a square sheet with bumps in it made of triangles)
example points for a 5x100x500 area:
points = [
# Constant Points
(0 , 0 , 0 ),
(0 , 100, 0 ),
(5 , 100, 500),
(1 , 50 , 100),
(2 , 60 , 200),
(3 , 75 , 300),
(4 , 80 , 400),
(5 , 0 , 499),
]
Here's what the points plotted would look like with the axes normalized:
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我认为 Delaunay 三角测量可能会满足您的需求:
http://en.wikipedia.org/wiki/Delaunay_triangulation
I think Delaunay Triangulation might give you what you require:
http://en.wikipedia.org/wiki/Delaunay_triangulation