Pagerank - 麻烦
我将向您展示 2 个场景(NB d=阻尼系数=0.5)
第一个场景:假设有 4 个节点A、B、C、D
:
B
链接。A
上的 , C, D
网页排名是: PR(A)=0.5 + 0.5*(PR(B)+PR(C)+PR(D))
我可以通过将 0.25
放在 PR(B)=PR(C)=PR(D)
我将得到 0.875 作为值。我不需要解析任何系统
第二种情况:假设有4个节点A、B、C、D
:
A
链接和B
上的C
- 上的
B
链接C
上的 C
链接在A
上,
这样 PageRank 将为:
PR(A)=0.5 + 0.5 * PR(C)
PR(B)=0.5 + 0.5 * (( PR(A))/(2))
PR(C)=0.5 + 0.5 * ((PR(A))/(2) + PR(B))
我必须解决这个系统以获得结果。我没有将 1/N
放在 PR(A)、PR(B)、PR(C) 和 PR(D)
事实上,我在互联网上搜索解决方案和值为:
$PR(A) = 14/13 = 1.07692308$
$PR(B) = 10/13 = 0.76923077$
$PR(C) = 15/13 = 1.15384615$
那么为什么有两个类似的场景我使用两种不同的行为?
希望有人能帮助我:) 干杯
I'll show you 2 scenarios (N.B. d=damping factor=0.5)
First scenario : suppose to have 4 nodes A, B, C, D
:
B, C, D
link onA
.
PageRank is :PR(A)=0.5 + 0.5*(PR(B)+PR(C)+PR(D))
I can resolve this equation by putting 0.25
on PR(B)=PR(C)=PR(D)
and i'll get 0.875as value. I don't need to resolve any system
Second scenario : suppose to have 4 nodes A, B, C, D
:
A
link onB
andC
B
link onC
C
link onA
In this way PageRank will be :
PR(A)=0.5 + 0.5 * PR(C)
PR(B)=0.5 + 0.5 * ((PR(A))/(2))
PR(C)=0.5 + 0.5 * ((PR(A))/(2) + PR(B))
I must to resolve this system to get the result. I don't put the 1/N
on PR(A), PR(B), PR(C) and PR(D)
In fact, i search on internet the solution and the values are :
$PR(A) = 14/13 = 1.07692308$
$PR(B) = 10/13 = 0.76923077$
$PR(C) = 15/13 = 1.15384615$
So why with two similar scenarios i use 2 different behaviour?
Hope someone can help me :) Cheers
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
由于第一个问题的对称性,这两种情况是不同的:B、C 和 D 链接到同一页面并从同一页面链接(即它们都指向 A,但没有任何内容指向它们)。因此它们的页面排名将是相同的,这给你带来了额外的约束:PR(B)=PR(C)=PR(D),使你能够轻松解决问题。
第二个问题不具有对称性,必须长期解决。
The two scenarios are different because of the symmetry in the first problem: B, C and D link to and are linked from the same pages (i.e. they all point to A and nothing points to them). Therefore their page rank will be the same, this gives you the extra constraint that PR(B)=PR(C)=PR(D), enabling you to solve the problem easily.
The second problem has no symmetry and has to be solved long hand.
假设有四个网页的小宇宙:A、B、C 和 D。从一个页面到其自身的链接或从一个页面到另一个页面的多个出站链接将被忽略。所有页面的 PageRank 都初始化为相同的值。在 PageRank 的原始形式中,所有页面的 PageRank 总和就是当时网络上的页面总数,因此本例中每个页面的初始 PageRank 为 1。但是,更高版本的 PageRank 和本节的其余部分,假设概率分布在 0 和
1. 因此每页的初始值为0.25。
在下一次迭代时从给定页面传输到其出站链接目标的 PageRank 在所有出站链接之间平均分配。
如果系统中唯一的链接是从页面 B、C 和 D 到 A,则每个链接将在下一次迭代时将 0.25 PageRank 转移到 A,总共 0.75。
PR(A)= PR(B) + PR(C) + PR(D)
假设页面 B 具有指向页面 C 和 A 的链接,页面 C 具有指向页面 A 的链接,页面 D 具有指向所有三个页面的链接页。因此,在下一次迭代时,页面 B 会将其现有值的一半(即 0.125)传输到页面 A,将另一半(即 0.125)传输到页面 C。页面 C 将其所有现有值(0.25)传输到唯一的页面。它链接到的页面 A。由于 D 具有三个出站链接,因此它会将其现有值的三分之一(即大约 0.083)转移到 A。完成此迭代后,页面 A 的 PageRank 将为 0.458。
PR(A)= \frac{PR(B)}{2}+ \frac{PR(C)}{1}+ \frac{PR(D)}{3}.\,
换句话说,PageRank 赋予出站链接的值等于文档自身的 PageRank 分数除以出站链接的数量 L( )。
PR(A)= \frac{PR(B)}{L(B)}+ \frac{PR(C)}{L(C)}+ \frac{PR(D)}{L(D)}。
一般情况下,任意页面u的PageRank值可以表示为:
PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)},
即PageRank值页面 u 取决于集合 Bu(包含链接到页面 u 的所有页面的集合)中包含的每个页面 v 的 PageRank 值,除以页面 v 的链接数量 L(v)。
如需进一步查询,请访问此处
Assume a small universe of four web pages: A, B, C and D. Links from a page to itself, or multiple outbound links from one single page to another single page, are ignored. PageRank is initialized to the same value for all pages. In the original form of PageRank, the sum of PageRank over all pages was the total number of pages on the web at that time, so each page in this example would have an initial PageRank of 1. However, later versions of PageRank, and the remainder of this section, assume a probability distribution between 0 and
1. Hence the initial value for each page is 0.25.
The PageRank transferred from a given page to the targets of its outbound links upon the next iteration is divided equally among all outbound links.
If the only links in the system were from pages B, C, and D to A, each link would transfer 0.25 PageRank to A upon the next iteration, for a total of 0.75.
PR(A)= PR(B) + PR(C) + PR(D)
Suppose instead that page B had a link to pages C and A, page C had a link to page A, and page D had links to all three pages. Thus, upon the next iteration, page B would transfer half of its existing value, or 0.125, to page A and the other half, or 0.125, to page C. Page C would transfer all of its existing value, 0.25, to the only page it links to, A. Since D had three outbound links, it would transfer one third of its existing value, or approximately 0.083, to A. At the completion of this iteration, page A will have a PageRank of 0.458.
PR(A)= \frac{PR(B)}{2}+ \frac{PR(C)}{1}+ \frac{PR(D)}{3}.\,
In other words, the PageRank conferred by an outbound link is equal to the document's own PageRank score divided by the number of outbound links L( ).
PR(A)= \frac{PR(B)}{L(B)}+ \frac{PR(C)}{L(C)}+ \frac{PR(D)}{L(D)}.
In the general case, the PageRank value for any page u can be expressed as:
PR(u) = \sum_{v \in B_u} \frac{PR(v)}{L(v)},
i.e. the PageRank value for a page u is dependent on the PageRank values for each page v contained in the set Bu (the set containing all pages linking to page u), divided by the number L(v) of links from page v.
For further queries visit here