检查 E 的近似值
MathWorld page 给出了 e
的简单数字公式,据称该公式对于第一个是正确的10^25 位数字。它指出 e
大约是
(1 + 9^-4^(7*6))^3^2^85
知道如何检查这个公式对于前 10 位数字是否正确吗? 这是右侧的另一种写法
Power[Plus[1, Power[9, Times[-1, Power[4, Times[7, 6]]]]], Power[3, Power[2, 85]]]
MathWorld page gives a simple numeric formula for e
that's allegedly correct for first 10^25 digits. It states that e
is approximately
(1 + 9^-4^(7*6))^3^2^85
Any idea how to check whether this formula is correct even for the first 10 digits?
Here's another way of writing the right hand side
Power[Plus[1, Power[9, Times[-1, Power[4, Times[7, 6]]]]], Power[3, Power[2, 85]]]
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
重复获取日志是解决此类问题的一个很好的(通常)普遍适用的解决方案。这是解决此问题的更特殊情况的方法:回想一下 e = lim(n->无穷大, (1+1/n)^n)。因此,为了很好地近似 e,我们需要的只是 9^(4^(42))(小数部分的分母)足够接近 3^(2^85) 并且很大。
在这种情况下,它们是相同的,因此我们有 n=3^(2^85),并且它将是 e 的非常近似值。这些数字很大,但并非不可行:
计算出 e 上的精确误差范围留给读者作为练习;-) -- 提示:将 mathworld 页面声称的准确度位数与上述数字进行比较,并且问问为什么会这样,想想一系列近似值 (1+1/1)^1、(1+1/2)^2 等。
Repeatedly taking logs is a nice (usually) generally-applicable solution to problems of this sort. Here's a more special-case approach to this problem: recall that e = lim(n->infinity, (1+1/n)^n). So to be a good approximation to e, all we need is for 9^(4^(42)) (the denominator of the fractional part) to be sufficiently close to 3^(2^85) and big.
In this case, they're identical, so we have n=3^(2^85), and it's going to be a very good approximation to e. These are big numbers, but not unworkably so:
Working out the exact error bounds on e is left as an exercise for the reader ;-) -- hint: compare the number of digits of accuracy the mathworld page claims and the above numbers, and ask why that might be, thinking of the series of approximations (1+1/1)^1, (1+1/2)^2, etc.
这个问题根本不需要Mathematica。首先,很容易证明
9^(4^(7*6))
完全等于3^2^85
,因为然后,我们知道表示
e
的方法是作为极限唯一的问题是,考虑到
n
非常大但有限,误差是什么。给定
n = 3^2^85
,我们取log(10,n) = 2^85 log(10,3) ~ 1.85 *10^25
代码>,我们得到一个估计与引用的类似
This problem does not need Mathematica at all. First, it is easy to show that
9^(4^(7*6))
is exactly equal to3^2^85
, sinceThen, we know that one of the ways to represent
e
is as a limitThe only question is what is the error given that
n
is very large but finite. We haveGiven the
n = 3^2^85
, i we take thelog(10,n) = 2^85 log(10,3) ~ 1.85 *10^25
, we get an estimatesimilar to the quoted one