如何有效地计算mathematica中的递归关系?

发布于 2024-10-12 00:25:55 字数 497 浏览 2 评论 0原文

我有一个递归要解决。

f(m,n)=Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]
f(0,n)=1, f(1,n)=n

然而,下面的 mma 代码效率非常低,

f[m_, n_] := Module[{},
  If[m < 0, Return[0];];
  If[m == 0, Return[1];];
  If[m == 1, Return[n];];
  Return[Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]];]

计算 f[40,20] 需要非常长的时间。有人可以建议一种有效的方法吗?非常感谢!

I have a recursion to solve for.

f(m,n)=Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]
f(0,n)=1, f(1,n)=n

However, the following mma code is very inefficient

f[m_, n_] := Module[{},
  If[m < 0, Return[0];];
  If[m == 0, Return[1];];
  If[m == 1, Return[n];];
  Return[Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]];]

It takes unbearably long to compute f[40,20]. Could anyone please suggest an efficient way of doing this? Many thanks!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

寒尘 2024-10-19 00:25:55

标准技巧是保存中间值。以下需要 0.000025 秒

f[m_, n_] := 0 /; m < 0;
f[0, n_] := 1;
f[1, n_] := n;
f[m_, n_] := (f[m, n] = 
    Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, 
       n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]);
AbsoluteTiming[f[40, 20]]

Standard trick is to save intermediate values. The following takes 0.000025 seconds

f[m_, n_] := 0 /; m < 0;
f[0, n_] := 1;
f[1, n_] := n;
f[m_, n_] := (f[m, n] = 
    Sum[f[m - 1, n - 1 - i] + f[m - 3, n - 5 - i], {i, 2, 
       n - 2*m + 2}] + f[m - 1, n - 3] + f[m - 3, n - 7]);
AbsoluteTiming[f[40, 20]]
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文