是否有与 MATLAB 的 datacursormode 等效的 matplotlib?

发布于 2024-10-11 22:57:34 字数 123 浏览 2 评论 0原文

在 MATLAB 中,当用户将鼠标悬停在图形上时,可以使用 datacursormode 向图形添加注释。 matplotlib中有这样的东西吗?或者我需要使用 matplotlib.text.Annotation 编写自己的事件?

In MATLAB, one can use datacursormode to add annotation to a graph when user mouses over. Is there such thing in matplotlib? Or I need to write my own event using matplotlib.text.Annotation?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

兮颜 2024-10-18 22:57:34

后期编辑/无耻插件:现在可以使用(具有更多功能)mpldatacursor。调用 mpldatacursor.datacursor() 将为所有 matplotlib 艺术家启用它(包括对图像中 z 值的基本支持等)。


据我所知,还没有一个已经实现,但编写类似的东西并不难:

import matplotlib.pyplot as plt

class DataCursor(object):
    text_template = 'x: %0.2f\ny: %0.2f'
    x, y = 0.0, 0.0
    xoffset, yoffset = -20, 20
    text_template = 'x: %0.2f\ny: %0.2f'

    def __init__(self, ax):
        self.ax = ax
        self.annotation = ax.annotate(self.text_template, 
                xy=(self.x, self.y), xytext=(self.xoffset, self.yoffset), 
                textcoords='offset points', ha='right', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        self.annotation.set_visible(False)

    def __call__(self, event):
        self.event = event
        # xdata, ydata = event.artist.get_data()
        # self.x, self.y = xdata[event.ind], ydata[event.ind]
        self.x, self.y = event.mouseevent.xdata, event.mouseevent.ydata
        if self.x is not None:
            self.annotation.xy = self.x, self.y
            self.annotation.set_text(self.text_template % (self.x, self.y))
            self.annotation.set_visible(True)
            event.canvas.draw()

fig = plt.figure()
line, = plt.plot(range(10), 'ro-')
fig.canvas.mpl_connect('pick_event', DataCursor(plt.gca()))
line.set_picker(5) # Tolerance in points

Datacursor-ish thing在 matplotlib

因为看起来至少有几个人正在使用这个,所以我在下面添加了一个更新版本。

新版本具有更简单的用法和更多的文档(即至少一点点)。

基本上你会像这样使用它:

plt.figure()
plt.subplot(2,1,1)
line1, = plt.plot(range(10), 'ro-')
plt.subplot(2,1,2)
line2, = plt.plot(range(10), 'bo-')

DataCursor([line1, line2])

plt.show()

主要区别是 a) 不需要手动调用 line.set_picker(...),b) 不需要手动调用 Fig.canvas.mpl_connect,以及 c) 此版本处理多个轴和多个图形。

from matplotlib import cbook

class DataCursor(object):
    """A simple data cursor widget that displays the x,y location of a
    matplotlib artist when it is selected."""
    def __init__(self, artists, tolerance=5, offsets=(-20, 20), 
                 template='x: %0.2f\ny: %0.2f', display_all=False):
        """Create the data cursor and connect it to the relevant figure.
        "artists" is the matplotlib artist or sequence of artists that will be 
            selected. 
        "tolerance" is the radius (in points) that the mouse click must be
            within to select the artist.
        "offsets" is a tuple of (x,y) offsets in points from the selected
            point to the displayed annotation box
        "template" is the format string to be used. Note: For compatibility
            with older versions of python, this uses the old-style (%) 
            formatting specification.
        "display_all" controls whether more than one annotation box will
            be shown if there are multiple axes.  Only one will be shown
            per-axis, regardless. 
        """
        self.template = template
        self.offsets = offsets
        self.display_all = display_all
        if not cbook.iterable(artists):
            artists = [artists]
        self.artists = artists
        self.axes = tuple(set(art.axes for art in self.artists))
        self.figures = tuple(set(ax.figure for ax in self.axes))

        self.annotations = {}
        for ax in self.axes:
            self.annotations[ax] = self.annotate(ax)

        for artist in self.artists:
            artist.set_picker(tolerance)
        for fig in self.figures:
            fig.canvas.mpl_connect('pick_event', self)

    def annotate(self, ax):
        """Draws and hides the annotation box for the given axis "ax"."""
        annotation = ax.annotate(self.template, xy=(0, 0), ha='right',
                xytext=self.offsets, textcoords='offset points', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        annotation.set_visible(False)
        return annotation

    def __call__(self, event):
        """Intended to be called through "mpl_connect"."""
        # Rather than trying to interpolate, just display the clicked coords
        # This will only be called if it's within "tolerance", anyway.
        x, y = event.mouseevent.xdata, event.mouseevent.ydata
        annotation = self.annotations[event.artist.axes]
        if x is not None:
            if not self.display_all:
                # Hide any other annotation boxes...
                for ann in self.annotations.values():
                    ann.set_visible(False)
            # Update the annotation in the current axis..
            annotation.xy = x, y
            annotation.set_text(self.template % (x, y))
            annotation.set_visible(True)
            event.canvas.draw()

if __name__ == '__main__':
    import matplotlib.pyplot as plt
    plt.figure()
    plt.subplot(2,1,1)
    line1, = plt.plot(range(10), 'ro-')
    plt.subplot(2,1,2)
    line2, = plt.plot(range(10), 'bo-')

    DataCursor([line1, line2])

    plt.show()

Late Edit / Shameless Plug: This is now available (with much more functionality) as mpldatacursor. Calling mpldatacursor.datacursor() will enable it for all matplotlib artists (including basic support for z-values in images, etc).


As far as I know, there isn't one already implemented, but it's not too hard to write something similar:

import matplotlib.pyplot as plt

class DataCursor(object):
    text_template = 'x: %0.2f\ny: %0.2f'
    x, y = 0.0, 0.0
    xoffset, yoffset = -20, 20
    text_template = 'x: %0.2f\ny: %0.2f'

    def __init__(self, ax):
        self.ax = ax
        self.annotation = ax.annotate(self.text_template, 
                xy=(self.x, self.y), xytext=(self.xoffset, self.yoffset), 
                textcoords='offset points', ha='right', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        self.annotation.set_visible(False)

    def __call__(self, event):
        self.event = event
        # xdata, ydata = event.artist.get_data()
        # self.x, self.y = xdata[event.ind], ydata[event.ind]
        self.x, self.y = event.mouseevent.xdata, event.mouseevent.ydata
        if self.x is not None:
            self.annotation.xy = self.x, self.y
            self.annotation.set_text(self.text_template % (self.x, self.y))
            self.annotation.set_visible(True)
            event.canvas.draw()

fig = plt.figure()
line, = plt.plot(range(10), 'ro-')
fig.canvas.mpl_connect('pick_event', DataCursor(plt.gca()))
line.set_picker(5) # Tolerance in points

Datacursor-ish thing in matplotlib

As it seems like at least a few people are using this, I've added an updated version below.

The new version has a simpler usage and a lot more documentation (i.e. a tiny bit, at least).

Basically you'd use it similar to this:

plt.figure()
plt.subplot(2,1,1)
line1, = plt.plot(range(10), 'ro-')
plt.subplot(2,1,2)
line2, = plt.plot(range(10), 'bo-')

DataCursor([line1, line2])

plt.show()

The main differences are that a) there's no need to manually call line.set_picker(...), b) there's no need to manually call fig.canvas.mpl_connect, and c) this version handles multiple axes and multiple figures.

from matplotlib import cbook

class DataCursor(object):
    """A simple data cursor widget that displays the x,y location of a
    matplotlib artist when it is selected."""
    def __init__(self, artists, tolerance=5, offsets=(-20, 20), 
                 template='x: %0.2f\ny: %0.2f', display_all=False):
        """Create the data cursor and connect it to the relevant figure.
        "artists" is the matplotlib artist or sequence of artists that will be 
            selected. 
        "tolerance" is the radius (in points) that the mouse click must be
            within to select the artist.
        "offsets" is a tuple of (x,y) offsets in points from the selected
            point to the displayed annotation box
        "template" is the format string to be used. Note: For compatibility
            with older versions of python, this uses the old-style (%) 
            formatting specification.
        "display_all" controls whether more than one annotation box will
            be shown if there are multiple axes.  Only one will be shown
            per-axis, regardless. 
        """
        self.template = template
        self.offsets = offsets
        self.display_all = display_all
        if not cbook.iterable(artists):
            artists = [artists]
        self.artists = artists
        self.axes = tuple(set(art.axes for art in self.artists))
        self.figures = tuple(set(ax.figure for ax in self.axes))

        self.annotations = {}
        for ax in self.axes:
            self.annotations[ax] = self.annotate(ax)

        for artist in self.artists:
            artist.set_picker(tolerance)
        for fig in self.figures:
            fig.canvas.mpl_connect('pick_event', self)

    def annotate(self, ax):
        """Draws and hides the annotation box for the given axis "ax"."""
        annotation = ax.annotate(self.template, xy=(0, 0), ha='right',
                xytext=self.offsets, textcoords='offset points', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
                )
        annotation.set_visible(False)
        return annotation

    def __call__(self, event):
        """Intended to be called through "mpl_connect"."""
        # Rather than trying to interpolate, just display the clicked coords
        # This will only be called if it's within "tolerance", anyway.
        x, y = event.mouseevent.xdata, event.mouseevent.ydata
        annotation = self.annotations[event.artist.axes]
        if x is not None:
            if not self.display_all:
                # Hide any other annotation boxes...
                for ann in self.annotations.values():
                    ann.set_visible(False)
            # Update the annotation in the current axis..
            annotation.xy = x, y
            annotation.set_text(self.template % (x, y))
            annotation.set_visible(True)
            event.canvas.draw()

if __name__ == '__main__':
    import matplotlib.pyplot as plt
    plt.figure()
    plt.subplot(2,1,1)
    line1, = plt.plot(range(10), 'ro-')
    plt.subplot(2,1,2)
    line2, = plt.plot(range(10), 'bo-')

    DataCursor([line1, line2])

    plt.show()
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文