模拟退火和 Yahtzee!

发布于 2024-10-11 11:48:05 字数 1082 浏览 5 评论 0原文

我选择了编程挑战并找到了 Yahtzee!我将简化的问题:

  • 有 13 个得分类别
  • 一名玩家有 13 次掷骰(包括一场比赛)
  • 每个掷骰必须适合一个不同的类别
  • 目标是找到一次比赛的最高得分(掷骰在类别中的最佳位置); Score(play) 返回游戏的分数

暴力破解找到最大游戏分数需要 13! (= 6,227,020,800) Score() 调用。

我选择模拟退火来更快地找到接近最高分的东西。虽然不是确定性的,但已经足够了。我有一个 13 卷 5 个骰子的列表,例如:

((1,2,3,4,5) #1
 (1,2,6,3,4),#2
    ...
 (1,4,3,2,2) #13
)

和一个游戏 (1,5,6,7,2,3,4,8,9,10,13,12,11)传递给 Score() 返回该比赛排列的分数。

如何选择一个好的“邻国”?对于随机重启,我可以简单地选择 no 的随机排列。 1-13,将它们放入向量中,并对它们进行评分。在旅行推销员问题中,以下是一个良好邻国的示例:

“某些特定的邻居 排列是排列 例如由 交换一对相邻的 城市。”

对简单地交换两个随机向量位置有一种不好的感觉,就像这样:

(1,5,6,7, 2 , 3,4,8,9,10, 13, 12,11) # switch 2 and 13
(1,5,6,7, 13, 3,4,8,9,10, 2 , 12,11) # now score this one

但我没有证据,也不知道如何选择一个好的邻国。有人对如何选择好的邻国有任何想法吗?

I've picked up Programming Challenges and found a Yahtzee! problem which I will simplify:

  • There are 13 scoring categories
  • There are 13 rolls by a player (comprising a play)
  • Each roll must fit in a distinct category
  • The goal is to find the maximum score for a play (the optimal placement of rolls in categories); score(play) returns the score for a play

Brute-forcing to find the maximum play score requires 13! (= 6,227,020,800) score() calls.

I choose simulated annealing to find something close to the highest score, faster. Though not deterministic, it's good enough. I have a list of 13 rolls of 5 die, like:

((1,2,3,4,5) #1
 (1,2,6,3,4),#2
    ...
 (1,4,3,2,2) #13
)

And a play (1,5,6,7,2,3,4,8,9,10,13,12,11) passed into score() returns a score for that play's permutation.

How do I choose a good "neighboring state"? For random-restart, I can simply choose a random permutation of nos. 1-13, put them in a vector, and score them. In the traveling salesman problem, here's an example of a good neighboring state:

"The neighbours of some particular
permutation are the permutations that
are produced for example by
interchanging a pair of adjacent
cities."

I have a bad feeling about simply swapping two random vector positions, like so:

(1,5,6,7, 2 , 3,4,8,9,10, 13, 12,11) # switch 2 and 13
(1,5,6,7, 13, 3,4,8,9,10, 2 , 12,11) # now score this one

But I have no evidence and don't know how to select a good neighboring state. Anyone have any ideas on how to pick good neighboring states?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

箹锭⒈辈孓 2024-10-18 11:48:05

对我来说,配对交换策略听起来不错。从理论上讲,它肯定会访问所有排列。我认为,要点是看看“邻居”在您的情况下是否真的“相似”,即仅在一对交换中不同的两个位置在分数上是否相当相似。我无法决定这一点,因为我不清楚你的“游戏”规则。

The pair-swap strategy does not sound bad to me. It certainly visits -in theory- all permutations. The main point, I think, is to see if the "neighbors" are really "similar" in your case, i.e. if two placements that differ only in a pair swapping are rather similar in score. I cannot decide this, because the rules of your "game" are not clear to me.

柠栀 2024-10-18 11:48:05

诀窍是要有多种类型的动作。
因此,为 SA 提供小型、统一的动作和大型、多样化的动作。
但提供第一个的机会更高。
小动作很简单:更改 1 或切换 2。

请查看 drools planner 中的护士排班示例。它是用java开源的。

The trick is to have multiple types of moves.
So offer SA both small, unifying moves and big, diversifying moves.
But have a higher chance of offering the first.
The small moves are easy: change 1 or switch 2.

Take a look at my nurse rostering example in drools planner. Its open source in java.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文