证明因式分解问题 α处于 NP 状态

发布于 2024-10-11 11:39:57 字数 143 浏览 1 评论 0原文

试图温习计算理论,但不确定解决方案:

Prove that the problem of factoring α is in NP.

我有一种感觉,这可能与寻找 NP 问题和找到分解 α 问题的约简有关。

Trying to brush up on computation theory but am not sure of solution to this:

Prove that the problem of factoring α is in NP.

I have a feeling it may be related to finding an NP problem and finding a reduction to the problem of factoring α.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

攒眉千度 2024-10-18 11:39:57

这其实很简单。乘法在 P 中。NP 与“并行检查所有可能的多项式大小的解”相同。如果 alpha 被编码为长度为 n 的位串,则因子总长度最多为 n + c。

它不是“NP完全”。没有办法将任意 NP 问题转化为因式分解。

This is simple actually. Multiplication is in P. NP is the same as "checking all possible polynomial sized solutions in parallel". If alpha is encoded as a length n bitstring, the factors total length is at most n + c.

What it is not is "NP-complete". There is no way to turn an arbitrary NP problem into factoring.

薆情海 2024-10-18 11:39:57

Problem in P:是一个问题,可以通过确定性图灵机在多项式时间内计算
NP 中的问题:是一个问题,可以通过确定性图灵机进行多项式验证。

在 NP 中,我们以这样的方式使用非确定性,即我们只需要接受计算树的一个分支(我们在“同一”时间尝试“所有”可能性)。多项式非常可靠意味着我们有一个证书(假设为 c),它是输入单词(假设为 w)的解。考虑到输入长度,证书必须具有多项式长度。我们的任务只是验证证书是否是一个解决方案。例如,在 SAT(可满足性问题)中,证书是正确的分配(这是不确定性猜测的)。

所以你证明你的问题是 NP :
存在一个验证一对 (w,c) 的 DTM,其中 w 是输入数,c 是其因子。您必须构造一个veryfier,将c 中的因子相乘并将其与w 进行比较。

Problem in P : is a problem, that is computable by Deterministic Turing Machine in polynomial time
Problem in NP : is a problem, thas is polynomicaly veryfiable by Deterministic Turing Machine.

In NP, we are using non-determinism in such way, that we require only one branch of a computation tree to be accepted (we try "all" possibilities at the "same" time). Polynomicaly veryfiable means, that we have a certificate (let it be c), that is a solution to the input word (let it be w). Certificate must be of a polynomial length considering input length. Our task is only to verify if a certificate is a solution. For example in SAT(satisfyability problem) a certificate is a correct assignement (which is guessed non-deterministically).

So You prove that your problem is in NP :
There exists a DTM that verifies a pair (w,c), where w is input number and c are its factors. You must just construct a veryfier that multiplies factors in c and compares it to w.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文